Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Optics

Silica

Articles 1 - 5 of 5

Full-Text Articles in Physics

Ultrafast Laser-Induced Damage And The Influence Of Spectral Effects, Jeremy Gulley Nov 2012

Ultrafast Laser-Induced Damage And The Influence Of Spectral Effects, Jeremy Gulley

Jeremy R. Gulley

Numerous studies have investigated the prerequisite role of photoionization in ultrafast laser-induced damage (LID) of bulk dielectrics. This study examines the role of spectral width and instantaneous laser frequency in LID using a frequency dependent multiphoton ionization (MPI) model and numerical simulation of initially 800 nm laser pulses propagating through fused silica. Assuming a band gap of 9 eV, MPI by an 800 nm field is a six-photon process, but when the instantaneous wavelength is greater than 827 nm an additional photon is required for photoionization, reducing the probability of the event by many orders of magnitude. Simulation results suggest …


Modeling Free-Carrier Absorption And Avalanching By Ultrashort Laser Pulses, Jeremy Gulley Aug 2011

Modeling Free-Carrier Absorption And Avalanching By Ultrashort Laser Pulses, Jeremy Gulley

Jeremy R. Gulley

In the past decade it was demonstrated experimentally that negatively-chirped laser pulses can lower the surface LIDT for wide band-gap materials by decreasing the number of photons required for photoionization on the leading edge of the pulse. Similarly, simulations have shown that positively-chirped pulses resulting from selffocusing and self-phase modulation in bulk dielectrics can alter the onset of laser-induced material modifications by increasing the number of photons required for photoionization on the leading edge of the pulse. However, the role of multi-chromatic effects in free-carrier absorption and avalanching has yet to be addressed. In this work a frequency-selective model of …


Frequency Dependence In The Initiation Of Laser-Induced Damage, Jeremy Gulley Aug 2010

Frequency Dependence In The Initiation Of Laser-Induced Damage, Jeremy Gulley

Jeremy R. Gulley

Numerous studies have investigated the role of photoionization in ultrafast laser-induced damage of bulk dielectrics. This study examines the role of spectral width and instantaneous laser frequency in laser-induced damage using a frequency dependent multiphoton ionization model and numerical simulation of an 800 nm laser pulse propagating through fused silica. When the individual photon wavelengths are greater than 827 nm, an additional photon is required for photoionization, reducing the probability of the event by many orders of magnitude. Simulation results suggest that this frequency dependence may significantly affect the processes of laser-induced damage and filamentation.


Simulation And Analysis Of Ultrafast Laser Pulse Induced Plasma Generation In Dielectric Materials, Jeremy Gulley, Sebastian Winkler, William Dennis Mar 2007

Simulation And Analysis Of Ultrafast Laser Pulse Induced Plasma Generation In Dielectric Materials, Jeremy Gulley, Sebastian Winkler, William Dennis

Jeremy R. Gulley

Recent experiments on optical damage by ultrashort laser pulses have demonstrated that the temporal pulseshape can dramatically influence plasma generation in fused silica and sapphire. In this work a modified 3+1D nonlinear Schroedinger equation for the pulse propagation coupled to a rate equation for the plasma density in the dielectric material is used to simulate pulse propagation and plasma formation in a range of dielectric materials. We use these simulations to analyze the influence of pulse-width, pulse-shape and beam geometry on the formation of the electron plasma and hence damage in the bulk material. In particular, when possible, we simulate …


Ionic Polishing Of Fused Silica And Glass, Raymond Wilson Dec 1969

Ionic Polishing Of Fused Silica And Glass, Raymond Wilson

Raymond Wilson

This paper reviews research in the erosion of fused silica and glass in an effort to gain a better understanding of the ionic polishing process as applied to optical materials. Erosion rates depend on ion mass, ion energy, target temperature, angle of incidence, and target material, and can also depend on vacuum pressure. The paper also considers other effects that accompany ionic bombardment of insulators, such as nature of the eroded surface, contaminate films, surface layer alterations, secondary electron emission, and gas trapping and release.