Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Chemistry

Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 117

Full-Text Articles in Physics

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski Dec 2018

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Generating High-Order Optical And Spin Harmonics From Ferromagnetic Monolayers, G.P. Zhang, M.S. Si, M. Murakami, Y.H. Bai, Thomas F. George Nov 2018

Generating High-Order Optical And Spin Harmonics From Ferromagnetic Monolayers, G.P. Zhang, M.S. Si, M. Murakami, Y.H. Bai, Thomas F. George

Thomas George

High-order harmonic generation (HHG) in solids has entered a new phase of intensive research, with envisioned band-structure mapping on an ultrashort time scale. This partly benefits from a flurry of new HHG materials discovered, but so far has missed an important group. HHG in magnetic materials should have profound impact on future magnetic storage technology advances. Here we introduce and demonstrate HHG in ferromagnetic monolayers. We find that HHG carries spin information and sensitively depends on the relativistic spin–orbit coupling; and if they are dispersed into the crystal momentum k space, harmonics originating from real transitions can be k-resolved and …


Hyperpolarization Of Silicon Nanoparticles With Tempo Radicals, Jingzhe Hu, Nicholas Whiting, Pratip Bhattacharya Mar 2018

Hyperpolarization Of Silicon Nanoparticles With Tempo Radicals, Jingzhe Hu, Nicholas Whiting, Pratip Bhattacharya

Nicholas Whiting

Silicon-based particles can be hyperpolarized via dynamic nuclear polarization to enhance 29Si magnetic resonance signals. Application of this technique to nanoscale silicon particles has been limited because of the low signal enhancements achieved; it is hypothesized that this is due to the low number of endogenous electronic defects inherent to the particles. We introduce a method of incorporating exogenous radicals into silicon nanoparticle suspensions in order to improve the hyperpolarization of 29Si nuclear spins to levels sufficient for in vivo MR imaging. Calibration of radical concentrations and polarization times are reported for a variety of silicon particle sizes (30−200 nm …


Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material For 29si Magnetic Resonance Imaging, Hyeonglim Seo, Ikjang Choi, Nicholas Whiting, Jingzhe Hu, Quy S. Luu, Shivanand Pudakalakatti, Caitlin Mccowan, Yaewon Kim, Niki Zacharias Millward, Seunghyun Lee, Pratip Bhattacharya, Youngbok Lee Dec 2017

Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material For 29si Magnetic Resonance Imaging, Hyeonglim Seo, Ikjang Choi, Nicholas Whiting, Jingzhe Hu, Quy S. Luu, Shivanand Pudakalakatti, Caitlin Mccowan, Yaewon Kim, Niki Zacharias Millward, Seunghyun Lee, Pratip Bhattacharya, Youngbok Lee

Nicholas Whiting

Porous silicon nanoparticles have recently garnered attention as potentially-promising biomedical platforms for drug delivery and medical diagnostics. Here, we demonstrate porous silicon nanoparticles as contrast agents for 29Si magnetic resonance imaging. Size-controlled porous silicon nanoparticles were synthesized by magnesiothermic reduction of silica nanoparticles and were surface activated for further functionalization. Particles were hyperpolarized via dynamic nuclear polarization to enhance their 29Si MR signals; the particles demonstrated long 29Si spin-lattice relaxation (T1) times (~25 mins), which suggests potential applicability for medical imaging. Furthermore, 29Si hyperpolarization levels were sufficient to allow 29Si MRI in phantoms. These results underscore the potential of porous …


Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu Nov 2017

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu

Jeffrey Hettinger

Carbide-derived Carbon (CDC) has been demonstrated to be an excellent electrode material for electrochemical devices including supercapacitors due to its chemical and electrochemical stability, large specific surface area and controllable pore size and morphology. Currently, CDC is prepared from metal carbides by chlorination in a chlorine gas atmosphere at temperatures of 350°C or higher. In this paper, conversion using electrochemical methods is reported, which can be achieved by oxidizing vanadium carbides (VC or V2C) in aqueous solutions at room temperature and a mild electrode potential to prepare CDC thin film as electrode materials for “on-chip” supercapacitiors. It was found that …


Using Raman Spectroscopy To Improve Hyperpolarized Noble Gas Production For Clinical Lung Imaging Techniques, Jonathan R. Birchall, Nicholas Whiting, Jason G. Skinner, Michael J. Barlow, Boyd M. Goodson Dec 2016

Using Raman Spectroscopy To Improve Hyperpolarized Noble Gas Production For Clinical Lung Imaging Techniques, Jonathan R. Birchall, Nicholas Whiting, Jason G. Skinner, Michael J. Barlow, Boyd M. Goodson

Nicholas Whiting

Spin-exchange optical pumping (SEOP) can be used to “hyperpolarize” 129Xe for human lung MRI. SEOP involves transfer of angular momentum from light to an alkali metal (Rb) vapor, and then onto 129Xe nuclear spins during collisions; collisions between excited Rb and N2 ensure that incident optical energy is nonradiatively converted into heat. However, because variables that govern SEOP are temperature-dependent, the excess heat can complicate efforts to maximize spin polarization—particularly at high laser fluxes and xenon densities. Ultra-low frequency Raman spectroscopy may be used to perform in situ gas temperature measurements to investigate the interplay of energy thermalization and SEOP …


Alamethicin In Lipid Bilayers: Combined Use Of X-Ray Scattering And Md Simulations, Jianjun Pan, D. Peter Tieleman, John F. Nagle, Norbert Kučerka, Prof. Stephanie Tristram-Nagle Ph.D. Aug 2016

Alamethicin In Lipid Bilayers: Combined Use Of X-Ray Scattering And Md Simulations, Jianjun Pan, D. Peter Tieleman, John F. Nagle, Norbert Kučerka, Prof. Stephanie Tristram-Nagle Ph.D.

John Copeland Nagle

We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/ DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added …


Preferential Silicon Site Occupation In Y₂Fe₁₄₋ₓsiₓb, G. K. Marasinghe, Oran Allan Pringle, Gary J. Long, Fernande Grandjean, William B. Yelon Aug 2016

Preferential Silicon Site Occupation In Y₂Fe₁₄₋ₓsiₓb, G. K. Marasinghe, Oran Allan Pringle, Gary J. Long, Fernande Grandjean, William B. Yelon

Oran Pringle

No abstract provided.


Study Of Structural And Magnetic Properties Of Iron-Rich Mixed Rare-Earth Nddyfe (17-Y-X)Coxsiy Compounds, Kishore Kamaraju, Jinbo Yang, William B. Yelon, Oran Allan Pringle, M. S. Kim, Qingsheng Cai, William Joseph James Aug 2016

Study Of Structural And Magnetic Properties Of Iron-Rich Mixed Rare-Earth Nddyfe (17-Y-X)Coxsiy Compounds, Kishore Kamaraju, Jinbo Yang, William B. Yelon, Oran Allan Pringle, M. S. Kim, Qingsheng Cai, William Joseph James

Oran Pringle

A series of NdDyFe(17-y-x)CoxSiy solid solutions with = 2 and 3 and = 0.5 1.0 and 1.5 were prepared by induction melting stoichiometric amounts of high-purity elements. The postannealed samples consist of two phases belonging to the space groups R3 m and P63 mmc . The lattice parameters and the unit cell volumes were calculated from the refinements of the magnetic and structural unit cells using the FULLPROF version of the Rietveld program. For a fixed content of Co, the maximum Curie temperatures (305 C to 405 C) were observed in samples with = 1 and having two phases, a …


Magnetic And Crystallographic Properties Of Lani5-XFex, C. Tan, Oran Allan Pringle, Mingxing Chen, William B. Yelon, J. Gebhardt, Naushad Ali, C. Y. Tai, G. K. Marasinghe, George Daniel Waddill, William Joseph James Aug 2016

Magnetic And Crystallographic Properties Of Lani5-XFex, C. Tan, Oran Allan Pringle, Mingxing Chen, William B. Yelon, J. Gebhardt, Naushad Ali, C. Y. Tai, G. K. Marasinghe, George Daniel Waddill, William Joseph James

Oran Pringle

No abstract provided.


Mössbauer Effect Studies Of Nd₂Fe14-XSiXB And Y3Fe14-XSiXB, Oran Allan Pringle, Gary J. Long, G. K. Marasinghe, William Joseph James, Antoni T. Pedziwiatr, W. E. Wallace, Fernande Grandjean Aug 2016

Mössbauer Effect Studies Of Nd₂Fe14-XSiXB And Y3Fe14-XSiXB, Oran Allan Pringle, Gary J. Long, G. K. Marasinghe, William Joseph James, Antoni T. Pedziwiatr, W. E. Wallace, Fernande Grandjean

Oran Pringle

No abstract provided.


How To Establish Successful Cooperative Student Learning Centers For Stem Courses, Ronald James Bieniek, Douglas R. Carroll, Cesar Mendoza, Oran Allan Pringle, Ekkehard Sinn, Kai-Tak Wan, Donald C. Wunsch Aug 2016

How To Establish Successful Cooperative Student Learning Centers For Stem Courses, Ronald James Bieniek, Douglas R. Carroll, Cesar Mendoza, Oran Allan Pringle, Ekkehard Sinn, Kai-Tak Wan, Donald C. Wunsch

Oran Pringle

Students learn more if they are actively involved in the learning process, particularly in a cooperative manner. Several UMR faculty have operated course-based learning centers (LCs) as part of the campus-wide Learning Enhancement Across Disciplines (LEAD) Program of student learning assistance and enhancement. LCs are designed to assist large numbers of students in a cost- and time-efficient manner that promotes student engagement without requiring undue amounts of faculty time. Course instructors spend time in the open learning environment of the LC, in lieu of office hours, guiding students to master course material and skills in their evolution from novice to …


Measurement Of Spin-Flip Probabilities For Ultracold Neutrons Interacting With Nickel Phosphorus Coated Surfaces, Zhaowen Tang, Evan Robert Adamek, Aaron Brandt, Nathan Brannan Callahan, Steven M. Clayton, Scott Allister Currie, Takeyasu M. Ito, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, Robert Wayne Pattie, John Clinton Ramsey, Daniel J. Salvat, Daniel J. Salvat, Alexander Saunders, Albert R. Young Aug 2016

Measurement Of Spin-Flip Probabilities For Ultracold Neutrons Interacting With Nickel Phosphorus Coated Surfaces, Zhaowen Tang, Evan Robert Adamek, Aaron Brandt, Nathan Brannan Callahan, Steven M. Clayton, Scott Allister Currie, Takeyasu M. Ito, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, Robert Wayne Pattie, John Clinton Ramsey, Daniel J. Salvat, Daniel J. Salvat, Alexander Saunders, Albert R. Young

Robert W. Pattie Jr.

We report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiPonSS=(3.3−5.6+1.8)×10−6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiPonAl=(3.6−5.9+2.1)×10−6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu=(6.7−2.5+5.0)×10−6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiPonSS<6.2×10−6 (90% C.L.) and βNiPonAl<7.0×10−6 (90% C.L.) for 50 μm thick …


Developing Hyperpolarized Silicon Particles For In Vivo Mri Targeting Of Ovarian Cancer, Nicholas Whiting, Jingzhe Hu, Niki M. Zacharias, Ganesh L. R. Lokesh, David E. Volk, David G. Menter, Rajesha Rupaimoole, Rebecca Previs, Anil K. Sood, Pratip Bhattacharya Aug 2016

Developing Hyperpolarized Silicon Particles For In Vivo Mri Targeting Of Ovarian Cancer, Nicholas Whiting, Jingzhe Hu, Niki M. Zacharias, Ganesh L. R. Lokesh, David E. Volk, David G. Menter, Rajesha Rupaimoole, Rebecca Previs, Anil K. Sood, Pratip Bhattacharya

Nicholas Whiting

Silicon-based nanoparticles are ideally suited for use as biomedical imaging agents due to their biocompatibility, biodegradability, and simple surface chemistry that facilitates drug loading and targeting. A method of hyperpolarizing silicon particles using dynamic nuclear polarization, which increases magnetic resonance imaging signals by several orders-of-magnitude through enhanced nuclear spin alignment, has recently been developed to allow silicon particles to function as contrast agents for in vivo magnetic resonance imaging. The enhanced spin polarization of silicon lasts significantly longer than other hyperpolarized agents (tens of minutes, whereas <1  min for other species at room temperature), allowing a wide range of potential …


The Treatment Of Exchange In Path Integral Simulations Via An Approximate Pseudopotential, Randall W. Hall Jun 2016

The Treatment Of Exchange In Path Integral Simulations Via An Approximate Pseudopotential, Randall W. Hall

Randall W. Hall

An approximate form that includes the effects of exchange is suggested for the short time propagator used in path integral simulations. The form is inspired physically by the approximation made in Hartree–Fock treatments of atoms and molecules. The approximate propagator is used with q u a n t i t a t i v e accuracy in two systems: an ideal gas of fermions localized in a three‐dimensional harmonic well and the triplet state of the sodium dimer.


Path Integral Study Of The Correlated Electronic States Of Na4–Na6, Randall W. Hall Jun 2016

Path Integral Study Of The Correlated Electronic States Of Na4–Na6, Randall W. Hall

Randall W. Hall

Feynman’s path integral formulation of quantum mechanics is used to study the correlated electronic states of Na4–Na6. Two types of simulations are performed: in the first, the nuclei are allowed to move at finite temperature in order to find the most stable geometries. In agreement with previous calculations, we find that planar structures are the most stable and that there is significant vibrational amplitude at finite temperatures, indicating that the Born–Oppenheimer surface is relatively flat. In the second type of simulation, the nuclei are held fixed at symmetric and asymmetric geometries and the correlated electron density is found. Our results …


Interplay Between Anomalous Transport And Catalytic Reaction Kinetics In Single-File Nanoporous Systems, Dajiang Liu, Jigang Wang, David Ackerman, Igor I. Slowing, Marek Pruski, Hung-Ting Chen, Victor S.-Y. Lin, James W. Evans Mar 2016

Interplay Between Anomalous Transport And Catalytic Reaction Kinetics In Single-File Nanoporous Systems, Dajiang Liu, Jigang Wang, David Ackerman, Igor I. Slowing, Marek Pruski, Hung-Ting Chen, Victor S.-Y. Lin, James W. Evans

Jigang Wang

Functionalized nanoporous materials have broad utility for catalysis applications. However, the kinetics of catalytic reaction processes in these systems can be strongly impacted by the anomalous transport. The most extreme case corresponds to single-file diffusion for narrow pores in which species cannot pass each other. For conversion reactions with a single-file constraint, traditional mean-field-type reaction-diffusion equations fail to capture the initial evolution of concentration profiles, and they cannot describe the scaling behavior of steady-state reactivity. Hydrodynamic reaction-diffusion equations accounting for the single-file aspects of chemical diffusion can describe such initial evolution, but additional refinements are needed to incorporate fluctuation effects …


Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya Dec 2015

Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya

Nicholas Whiting

Many existing and emerging techniques of interrogating metabolism in brain cancer are at an early stage of development. A few clinical trials that employ these techniques are in progress in patients with brain cancer to establish the clinical efficacy of these techniques. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy.


Characterization Of Physical, Thermal And Spectroscopic Properties Of Biofield Energy Treated P-Phenylenediamine And P-Toluidine, Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana Nov 2015

Characterization Of Physical, Thermal And Spectroscopic Properties Of Biofield Energy Treated P-Phenylenediamine And P-Toluidine, Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana

Mahendra Kumar Trivedi

Aromatic amines and their derivatives are widely used in the production of dyes, cosmetics, medicines and polymers. However, they pose a threat to the environment due to their hazardous wastes as well as their carcinogenic properties. The objective of the study was to use an alternate strategy i.e. biofield energy treatment and analyse its impact on physicochemical properties of aromatic amine derivatives viz. p-phenylenediamine (PPD) and p-toluidine. For this study, both the samples were taken and divided into two parts. One part was considered as control and another part was subjected to Mr. Trivedi’s biofield treatment. After treatment, both samples …


Constructing Explicit Magnetic Analogies For The Dynamics Of Glass Forming Liquids, Jacob D. Stevenson, Aleksandra M. Walczak, Randall W. Hall, Peter G. Wolynes Oct 2015

Constructing Explicit Magnetic Analogies For The Dynamics Of Glass Forming Liquids, Jacob D. Stevenson, Aleksandra M. Walczak, Randall W. Hall, Peter G. Wolynes

Randall W. Hall

By defining a spatially varying replica overlap parameter for a supercooled liquid referenced to an ensemble of fiducial liquid state configurations, we explicitly construct a constrained replica free energy functional that maps directly onto an Ising Hamiltonian with both random fields and random interactions whose statistics depend on the liquid structure. Renormalization group results for random magnets when combined with these statistics for the Lennard-Jones glass suggest that discontinuous replica symmetry breaking would occur if a liquid with short range interactions could be equilibrated at a sufficiently low temperature where its mean field configurational entropy would vanish, even though the …


Microscopic Theory Of Network Glasses, Randall Hall, Peter Wolynes Oct 2015

Microscopic Theory Of Network Glasses, Randall Hall, Peter Wolynes

Randall W. Hall

A theory of the glass transition of network liquids is developed using self-consistent phonon and liquid state approaches. The dynamical transition and entropy crisis characteristic of random first-order transitions are mapped as a function of the degree of bonding and density. Using a scaling relation for a soft-core model to crudely translate the densities into temperatures, theory predicts that the ratio of the dynamical transition temperature to the laboratory transition temperature rises as the degree of bonding increases, while the Kauzmann temperature falls explaining why highly coordinated liquids are “strong” while van der Waals liquids without coordination are “fragile.”


Transitions Of Tethered Chain Molecules Under Tension, Jutta Luettmer-Strathmann, Kurt Binder Sep 2015

Transitions Of Tethered Chain Molecules Under Tension, Jutta Luettmer-Strathmann, Kurt Binder

Jutta Luettmer-Strathmann

An applied tension force changes the equilibrium conformations of a polymer chain tethered to a planar substrate and thus affects the adsorption transition as well as the coil-globule and crystallization transitions. Conversely, solvent quality and surface attraction are reflected in equilibrium force-extension curves that can be measured in experiments. To investigate these effects theoretically, we study tethered chains under tension with Wang-Landau simulations of a bond-fluctuation lattice model. Applying our model to pulling experiments on biological molecules we obtain a good description of experimental data in the intermediate force range, where universal features dominate and finite size effects are small. …


Unimolecular Decomposition Of Formic And Acetic Acids: A Shock Tube/Laser Absorption Study, A. Elwardany, E. F. Nasir, Et. Es-Sebbar, A. Farooq Jul 2015

Unimolecular Decomposition Of Formic And Acetic Acids: A Shock Tube/Laser Absorption Study, A. Elwardany, E. F. Nasir, Et. Es-Sebbar, A. Farooq

Dr. Et-touhami Es-sebbar

The thermal decomposition of formic acid (HCOOH) and acetic acid (CH3COOH), two carboxylic acids which play an important role in oxygenate combustion chemistry, were investigated behind reflected shock waves using laser absorption. The rate constants of the primary decomposition pathways of these acids: The thermal decomposition of formic acid (HCOOH) and acetic acid (CH3COOH), two carboxylic acids which play an important role in oxygenate combustion chemistry, were investigated behind reflected shock waves using laser absorption. The rate constants of the primary decomposition pathways of these acids: HCOOH→CO+H2O (R1) HCOOH→CO2+H2 (R2) CH3COOH→CH4+CO2 (R3) CH3COOH→CH2CO+H2O (R4) were measured using simultaneous infrared laser …


Ab Initio Study Of Formazan And 3-Nitroformazan, G. Buemi, F. Zuccarello, P. Venuvanalingam, M. Ramalingam, Salai Ammal May 2015

Ab Initio Study Of Formazan And 3-Nitroformazan, G. Buemi, F. Zuccarello, P. Venuvanalingam, M. Ramalingam, Salai Ammal

Salai C. Ammal

Formazan and 3-nitroformazan have been investigated at abinitio level (MP2/6-31G** and B3LYP/6-31G**) in all their possible conformations, for studying the various possibilities of intramolecular hydrogen bonding formation. The trans-syn-s-cis (TSSC), known also asyellowform, has been found to be the most stable conformer (at least in the gas phase) in both compounds. This particular structure is strongly stabilized by a N–H···N hydrogen bridge, which gives rise to a hexatomic chelate ring, with the possibility of a proton transfer process.This closely resembles that of malondialdehyde, previously studied, in the evolution of the potential energy shape but with a greater barrier height. Various …


Obtaining Mixed Ionic/Electronic Conductivity In Perovskite Oxides In A Reducing Environment: A Computational Prediction For Doped Srtio3, S. Suthirakun, Salai Ammal, G. Xiao, Fanglin Chen, Kevin Huang, Hans-Conrad Zur Loye, Andreas Heyden May 2015

Obtaining Mixed Ionic/Electronic Conductivity In Perovskite Oxides In A Reducing Environment: A Computational Prediction For Doped Srtio3, S. Suthirakun, Salai Ammal, G. Xiao, Fanglin Chen, Kevin Huang, Hans-Conrad Zur Loye, Andreas Heyden

Salai C. Ammal

No abstract provided.


Computer-Aided Design Of Novel Heterogeneous Catalysts—A Combinatorial Computational Chemistry Approach, K. Yajima, Y. Ueda, H. Tsuruya, T. Kanougi, Y. Oumi, Salai Ammal, S. Takami, M. Kubo, A. Miyamoto May 2015

Computer-Aided Design Of Novel Heterogeneous Catalysts—A Combinatorial Computational Chemistry Approach, K. Yajima, Y. Ueda, H. Tsuruya, T. Kanougi, Y. Oumi, Salai Ammal, S. Takami, M. Kubo, A. Miyamoto

Salai C. Ammal

No abstract provided.


Dynamic Path Bifurcation For The Beckmann Reaction: Observation And Implication, H. Yamataka, M. Sato, H. Hasegawa, Salai Ammal May 2015

Dynamic Path Bifurcation For The Beckmann Reaction: Observation And Implication, H. Yamataka, M. Sato, H. Hasegawa, Salai Ammal

Salai C. Ammal

The reaction of oximes to amides, known as the Beckmann rearrangement, may undergo fragmentation to form carbocations + nitriles instead of amides when the cations have reasonable stability. The reactions of oxime derivatives of 1-substituted-phenyl-2-propanones and 3-substituted-phenyl-2-butanones in aqueous solvents gave both rearrangement and fragmentation products, the ratio of which was dependent on substituents. Transition state (TS) optimizations and intrinsic reaction coordinate (IRC) calculations for the reaction of 1-phenyl-2-propanone oximes showed that there is a single TS for each substituted compound. The IRC path from the TS either led to a rearrangement product or a fragmentation product depending on the …


Ab Initio And Dft Investigations Of Lithium/Hydrogen Bonded Complexes Of Trimethylamine, Dimethyl Ether And Dimethyl Sulfide, Salai Ammal, P. Venuvanalingam May 2015

Ab Initio And Dft Investigations Of Lithium/Hydrogen Bonded Complexes Of Trimethylamine, Dimethyl Ether And Dimethyl Sulfide, Salai Ammal, P. Venuvanalingam

Salai C. Ammal

Ab initio and DFT computations have been carried out on LiF and HF complexes of a set of n-donors viz. trimethylamine, dimethyl ether and dimethyl sulfide with a 6-31++G(d,p) basis set. The effect of correlation has been included with MP2, MP4 and DFT calculations. NBO analyses of the wavefunctions have been performed to examine the intermolecular interaction at the orbital level. Calculations reveal that these donors form strong n→σ* complexes and computed binding energies of the (CH3)2O···HF complex agree very well with the experimental binding energies from IR spectroscopy. LiF forms stronger complexes than HF, …


Combinatorial Computational Chemistry Approach To The Design Of Metal Oxide Electronics Materials, B. Rodion, Salai Ammal, Y. Inaba, Y. Oumi, S. Takami, M. Kubo, A. Miyamoto, M. Kawasaki, M. Yoshimoto, H. Koinuma May 2015

Combinatorial Computational Chemistry Approach To The Design Of Metal Oxide Electronics Materials, B. Rodion, Salai Ammal, Y. Inaba, Y. Oumi, S. Takami, M. Kubo, A. Miyamoto, M. Kawasaki, M. Yoshimoto, H. Koinuma

Salai C. Ammal

Combinatorial chemistry has been developed as an experimental method where it is possible to synthesize hundreds of samples all at once and examine their properties. Recently, we introduced the concept of combinatorial approach to computational chemistry for material design and proposed a new method called `a combinatorial computational chemistry'. In this approach, the effects of large number of dopants, substrates, and buffer layers on the structures, electronic states, and properties of metal oxide electronics material is estimated systematically using computer simulations techniques, in order to predict the best dopant, substrate, and buffer layer for each metal oxide electronics materials.


Chemical Interaction Of Nf3 With Si (Part Ii): Density Functional Calculation Studies, A. Endou, T. Little, A. Yamada, K. Teraishi, M. Kubo, Salai Ammal, A. Miyamoto, M. Kitajima, F. Ohuchi May 2015

Chemical Interaction Of Nf3 With Si (Part Ii): Density Functional Calculation Studies, A. Endou, T. Little, A. Yamada, K. Teraishi, M. Kubo, Salai Ammal, A. Miyamoto, M. Kitajima, F. Ohuchi

Salai C. Ammal

No abstract provided.