Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Quantum Physics

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 61

Full-Text Articles in Physics

Interaction-Free Effects Between Distant Atoms, Yakir Aharonov, Eliahu Cohen, Avshalom C. Elitzur, Lee Smolin Dec 2017

Interaction-Free Effects Between Distant Atoms, Yakir Aharonov, Eliahu Cohen, Avshalom C. Elitzur, Lee Smolin

Mathematics, Physics, and Computer Science Faculty Articles and Research

A Gedanken experiment is presented where an excited and a ground-state atom are positioned such that, within the former’s half-life time, they exchange a photonwith 50% probability.Ameasurement of their energy statewill therefore indicate in 50% of the cases that no photon was exchanged. Yet other measurements would reveal that, by the mere possibility of exchange, the two atoms have become entangled. Consequently, the “no exchange” result, apparently precluding entanglement, is non-locally established between the atoms by this very entanglement. This quantum-mechanical version of the ancient Liar Paradox can be realized with already existing transmission schemes, with the addition of Bell’s …


Past Observable Dynamics Of A Continuously Monitored Qubit, Luis Pedro García-Pinto, Justin Dressel Dec 2017

Past Observable Dynamics Of A Continuously Monitored Qubit, Luis Pedro García-Pinto, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

Monitoring a quantum observable continuously in time produces a stochastic measurement record that noisily tracks the observable. For a classical process, such noise may be reduced to recover an average signal by minimizing the mean squared error between the noisy record and a smooth dynamical estimate. We show that for a monitored qubit, this usual procedure returns unusual results. While the record seems centered on the expectation value of the observable during causal generation, examining the collected past record reveals that it better approximates a moving-mean Gaussian stochastic process centered at a distinct (smoothed) observable estimate. We show that this …


Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko Dec 2017

Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

Improved knowledge of the magnetic field dependent flow properties of nanoparticle-based magnetic fluids is critical to the design of biomedical applications, including drug delivery and cell sorting. To probe the rheology of ferrofluid on a sub-millimeter scale, we examine the paths of 550 μm diameter glass spheres falling due to gravity in dilute ferrofluid, imposing a uniform magnetic field at an angle with respect to the vertical. Visualization of the spheres’ trajectories is achieved using high resolution X-ray phase-contrast imaging, allowing measurement of a terminal velocity while simultaneously revealing the formation of an array of long thread-like accumulations of magnetic …


Arrow Of Time For Continuous Quantum Measurement, Justin Dressel, Areeya Chantasri, Andrew N. Jordan, Alexander N. Korotkov Dec 2017

Arrow Of Time For Continuous Quantum Measurement, Justin Dressel, Areeya Chantasri, Andrew N. Jordan, Alexander N. Korotkov

Mathematics, Physics, and Computer Science Faculty Articles and Research

We investigate the statistical arrow of time for a quantum system being monitored by a sequence of measurements. For a continuous qubit measurement example, we demonstrate that time-reversed evolution is always physically possible, provided that the measurement record is also negated. Despite this restoration of dynamical reversibility, a statistical arrow of time emerges, and may be quantified by the log-likelihood difference between forward and backward propagation hypotheses. We then show that such reversibility is a universal feature of nonprojective measurements, with forward or backward Janus measurement sequences that are time-reversed inverses of each other.


Mode-Sum Prescription For Vacuum Polarization In Black Hole Spacetimes In Even Dimensions, Peter Taylor, Cormac Doran Nov 2017

Mode-Sum Prescription For Vacuum Polarization In Black Hole Spacetimes In Even Dimensions, Peter Taylor, Cormac Doran

Articles

We present a mode-sum regularization prescription for computing the vacuum polarization of a scalar field in static spherically symmetric black hole spacetimes in even dimensions. This is the first general and systematic approach to regularized vacuum polarization in higher even dimensions, building upon a previous scheme we developed for odd dimensions. Things are more complicated here since the even-dimensional propagator possesses logarithmic singularities which must be regularized. However, in spite of this complication, the regularization parameters can be computed in closed form in arbitrary even dimensions and for arbitrary metric function f(r). As an explicit example of our method, we …


Spin Mode Switching At The Edge Of A Quantum Hall System, Udit Khanna, Ganpathy Murthy, Sumathi Rao, Yuval Gefen Nov 2017

Spin Mode Switching At The Edge Of A Quantum Hall System, Udit Khanna, Ganpathy Murthy, Sumathi Rao, Yuval Gefen

Physics and Astronomy Faculty Publications

Quantum Hall states can be characterized by their chiral edge modes. Upon softening the edge potential, the edge has long been known to undergo spontaneous reconstruction driven by charging effects. In this Letter we demonstrate a qualitatively distinct phenomenon driven by exchange effects, in which the ordering of the edge modes at ν = 3 switches abruptly as the edge potential is made softer, while the ordering in the bulk remains intact. We demonstrate that this phenomenon is robust, and has many verifiable experimental signatures in transport.


Energy-Constrained Quantum Communication And Digital Dynamical Decoupling, Haoyu Qi Oct 2017

Energy-Constrained Quantum Communication And Digital Dynamical Decoupling, Haoyu Qi

LSU Doctoral Dissertations

This is a two-part thesis glued together by an everlasting theme in Quantum Information Science \-- to save the quantum state, or the information stored in it, from unavoidably environment-induced noise. The first part of this thesis studies the ultimate rate of reliably transmitting information, stored in quantum systems, through a noisy evolution. Specifically, we consider communication over optical links, upon which future inter-city quantum communication networks will be built. We show how to treat the infinite-dimensional bosonic system rigorously and establish the theory of energy-constrained private and quantum communication over quantum channels. Our result represents important progress in the …


Evolution Of Superoscillations For Schrödinger Equation In A Uniform Magnetic Field, Fabrizio Colombo, Jonathan Gantner, Daniele C. Struppa Sep 2017

Evolution Of Superoscillations For Schrödinger Equation In A Uniform Magnetic Field, Fabrizio Colombo, Jonathan Gantner, Daniele C. Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

Aharonov-Berry superoscillations are band-limited functions that oscillate faster than their fastest Fourier component. Superoscillations appear in several fields of science and technology, such as Aharonov’s weak measurement in quantum mechanics, in optics, and in signal processing. An important issue is the study of the evolution of superoscillations using the Schrödinger equation when the initial datum is a weak value. Some superoscillatory functions are not square integrable, but they are real analytic functions that can be extended to entire holomorphic functions. This fact leads to the study of the continuity of a class of convolution operators acting on suitable spaces of …


Sheaf Theoretic Formulation For Consciousness And Qualia And Relationship To The Idealism Of Non-Dual Philosophies, Menas Kafatos, Goro Kato Sep 2017

Sheaf Theoretic Formulation For Consciousness And Qualia And Relationship To The Idealism Of Non-Dual Philosophies, Menas Kafatos, Goro Kato

Mathematics, Physics, and Computer Science Faculty Articles and Research

Questions about the nature of reality, whether Consciousness is the fundamental reality in the universe, and what is Consciousness itself, have no answer in systems that assume an external reality independent of Consciousness. Ultimately, the ontological foundation of such systems is the absolute division of subject and object. We advocate instead what we consider to be an approach that is in agreement with the foundation of quantum reality, which is based on Rāmānuja’s version of Vedanta philosophy and non-dual Kashmir Śaivism. Quantum mechanics opened the door to consciousness, but it cannot account for consciousness. However, the quantum measurement problem implies …


Linear Feedback Stabilization Of A Dispersively Monitored Qubit, Taylor Lee Patti, Areeya Chantasri, Luis Pedro García-Pintos, Andrew N. Jordan, Justin Dressel Aug 2017

Linear Feedback Stabilization Of A Dispersively Monitored Qubit, Taylor Lee Patti, Areeya Chantasri, Luis Pedro García-Pintos, Andrew N. Jordan, Justin Dressel

Mathematics, Physics, and Computer Science Faculty Articles and Research

The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically.We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show …


Quantum Control Via A Genetic Algorithm Of The Field Ionization Pathway Of A Rydberg Electron, Vincent C. Gregoric, Xinyue Kang, Zhimin Cheryl Liu, Zoe A. Rowley, Thomas J. Carroll, Michael W. Noel Aug 2017

Quantum Control Via A Genetic Algorithm Of The Field Ionization Pathway Of A Rydberg Electron, Vincent C. Gregoric, Xinyue Kang, Zhimin Cheryl Liu, Zoe A. Rowley, Thomas J. Carroll, Michael W. Noel

Physics and Astronomy Faculty Publications

Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n*)4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus …


On Syntropy & Precognitive Interdiction Based On Wheeler-Feynman’S Absorber Theory, Florentin Smarandache, Victor Christianto, Yunita Umniyati Aug 2017

On Syntropy & Precognitive Interdiction Based On Wheeler-Feynman’S Absorber Theory, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

It has been known for long time that intuition plays significant role in many professions and human life, including in entrepreneurship, government, and also in detective or law enforcement activities. Women are known to possess better intuitive feelings or “hunch” compared to men. Despite these examples, such a precognitive interdiction is hardly accepted in established science. In this letter, we discuss briefly the advanced solutions of Maxwell equations, and then explore plausible connection between syntropy and precognition.


Improved Partial Charge Models In Siliceous Zeolites For The Simulation Of Adsorption And Identification Of Catalytic Sites, Jarod J. Wolffis Aug 2017

Improved Partial Charge Models In Siliceous Zeolites For The Simulation Of Adsorption And Identification Of Catalytic Sites, Jarod J. Wolffis

UNLV Theses, Dissertations, Professional Papers, and Capstones

Utilization of computational modelling and simulation is expanding as computer processing power has increased and as new tools have been developed. This thesis focuses on efforts to improve the accuracy of simulations in aluminosilicate zeolites, an industrially important category of materials for catalysis and separations. For these sorbents, partial atomic charge represents a critical parameter in molecular mechanics simulations, determining the Coulombic non-bonding interaction. Partial charges may also be used as a measure of important physical parameters of the system such as the degree of covalency or the relative acidity of catalytic sites. We compare several common methods for predicting …


Optimizing An Electron's Path To Ionization Using A Genetic Algorithm, Jason Bennett, Kevin Choice Jul 2017

Optimizing An Electron's Path To Ionization Using A Genetic Algorithm, Jason Bennett, Kevin Choice

Physics and Astronomy Summer Fellows

A Rydberg atom is an atom with a highly excited and weakly bound valence electron. A widespread method of studying quantum mechanics with Rydberg atoms is to ionize the electron and measure its arrival time. We use a Genetic Algorithm (GA) to control the electron's path to ionization. The Rydberg electron's energy levels are strongly shifted by the presence of an electric field. The energy levels shift and curve, but never cross. At an avoided crossing the electron can jump from one level to the next. By engineering the electric field's time dependence, we thereby control the path to ionization. …


Elliptic Genera Of 2d (0,2) Gauge Theories From Brane Brick Models, Sebastian Franco, Dongwook Ghim, Sangmin Lee, Rak-Kyeong Seong Jul 2017

Elliptic Genera Of 2d (0,2) Gauge Theories From Brane Brick Models, Sebastian Franco, Dongwook Ghim, Sangmin Lee, Rak-Kyeong Seong

Publications and Research

We compute the elliptic genus of abelian 2d (0, 2) gauge theories corresponding to brane brick models. These theories are worldvolume theories on a single D1-brane probing a toric Calabi-Yau 4-fold singularity. We identify a match with the elliptic genus of the non-linear sigma model on the same Calabi-Yau background, which is computed using a new localization formula. The matching implies that the quantum effects do not drastically alter the correspondence between the geometry and the 2d (0, 2) gauge theory. In theories whose matter sector suffers from abelian gauge anomaly, we propose an ansatz for an anomaly …


Is Qbism The Future Of Quantum Physics?, Kelvin J. Mcqueen Jul 2017

Is Qbism The Future Of Quantum Physics?, Kelvin J. Mcqueen

Philosophy Faculty Articles and Research

A review of Hans Christian von Baeyer’s QBism: The Future of Quantum Physics.


Distance Verification For Classical And Quantum Ldpc Codes, Ilya Dumer, Alexey Kovalev, Leonid P. Pryadko Jul 2017

Distance Verification For Classical And Quantum Ldpc Codes, Ilya Dumer, Alexey Kovalev, Leonid P. Pryadko

Department of Physics and Astronomy: Faculty Publications

The techniques of distance verification known for general linear codes are first applied to the quantum stabilizer codes. Then, these techniques are considered for classical and quantum (stabilizer) low-density-parity-check (LDPC) codes. New complexity bounds for distance verification with provable performance are derived using the average weight spectra of the ensembles of LDPC codes. These bounds are expressed in terms of the erasure-correcting capacity of the corresponding ensemble. We also present a new irreducible-cluster technique that can be applied to any LDPC code and takes advantage of parity-checks’ sparsity for both the classical and quantum LDPC codes. This technique reduces complexity …


Is A Time Symmetric Interpretation Of Quantum Theory Possible Without Retrocausality?, Matthew S. Leifer, Matthew F. Pusey Jun 2017

Is A Time Symmetric Interpretation Of Quantum Theory Possible Without Retrocausality?, Matthew S. Leifer, Matthew F. Pusey

Mathematics, Physics, and Computer Science Faculty Articles and Research

Huw Price has proposed an argument that suggests a time symmetric ontology for quantum theory must necessarily be retrocausal, i.e. it must involve influences that travel backwards in time. One of Price's assumptions is that the quantum state is a state of reality. However, one of the reasons for exploring retrocausality is that it offers the potential for evading the consequences of no-go theorems, including recent proofs of the reality of the quantum state. Here, we show that this assumption can be replaced by a different assumption, called λ-mediation, that plausibly holds independently of the status of the quantum …


Quantum Optical Interferometry And Quantum State Engineering, Richard J. Birrittella Jr Jun 2017

Quantum Optical Interferometry And Quantum State Engineering, Richard J. Birrittella Jr

Dissertations, Theses, and Capstone Projects

We highlight some of our research done in the fields of quantum optical interferometry and quantum state engineering. We discuss the body of work for which our research is predicated, as well as discuss some of the fundamental tenants of the theory of phase estimation. We do this in the context of quantum optical interferometry where our primary interest lies in the calculation of the quantum Fisher information as it has been shown that the minimum phase uncertainty obtained, the quantum Cramer-Rao bound, is saturated by parity-based detection methods. We go on to show that the phase uncertainty one obtains …


Effect Of Damping And Thermal Gradient On Vibrations Of Orthotropic Rectangular Plate Of Variable Thickness, U. S. Rana, Robin Robin Jun 2017

Effect Of Damping And Thermal Gradient On Vibrations Of Orthotropic Rectangular Plate Of Variable Thickness, U. S. Rana, Robin Robin

Applications and Applied Mathematics: An International Journal (AAM)

In this present paper, damped vibrations of an orthotropic rectangular plate resting on elastic foundation with thermal gradient is modeled, considering variable thickness of plate. Following Le`vy approach, the governed equation of motion is solved numerically using quintic spline technique with clamped and simply supported edges. The effect of damping parameter and thermal gradient together with taper constant, density parameter and elastic foundation parameter on the natural frequencies of vibration for the first three modes of vibration are depicted through Tables and Figures, and mode shapes have been computed for fixed value of plate parameter. It has been observed that …


On-Sight Shifting At The Cryogenic Underground Observatory For Rare Events, Aaron C. Wong Jun 2017

On-Sight Shifting At The Cryogenic Underground Observatory For Rare Events, Aaron C. Wong

Physics

During the summer of 2016, four Cal Poly students traveled to Assergi, Italy to contribute to the CUORE collaboration which is in search of a rare process called neutrinoless double beta decay. If detected, neutrinoless double beta decay will make break throughs in particle and nuclear physics, and will be the first observation of lepton number violation. The Cal Poly students provided on-sight shifting support during the installation phase of the project. This is a breakdown of the physics behind CUORE and Cal Poly's contribution.


Measurement-Based Quantum Computation And Symmetry-Protected Topological Order, Jacob E. Miller May 2017

Measurement-Based Quantum Computation And Symmetry-Protected Topological Order, Jacob E. Miller

Physics & Astronomy ETDs

While quantum computers can achieve dramatic speedups over the classical computers familiar to us, identifying the origin of this quantum advantage in physical systems remains a major goal of quantum information science. A useful tool here is measurement-based quantum computation (MQC), a computational framework utilizing the quantum entanglement found in many-body resource states. Not all resource states are useful for quantum computation however, so an important question is what properties of many-body entanglement characterize universal resource states, which can implement any quantum computation.

Many-body states are also studied in condensed matter physics, where the collective behavior of quantum many-body systems …


Developing Tools For A Precision Measurement Of Newton's Gravitational Constant Using Atom Interferometry, Elizabeth Ashwood May 2017

Developing Tools For A Precision Measurement Of Newton's Gravitational Constant Using Atom Interferometry, Elizabeth Ashwood

Honors College Theses

We propose a new atom interferometry scheme for making a precision measurement of Newton's Gravitational constant (Big G) using NASA's Cold-Atom Laboratory which is scheduled to be deployed to the International Space Station in 2017. The proposed interferometer consists of splitting a harmonically confined Bose-Einstein condensate into multiple pieces. In a perfect harmonic potential, all of the pieces come to rest at the same time, at which point the harmonic trap is turned off. These initially motionless condensate clouds then accumulate different phases due to the relative velocity they develop caused by the gravitational attraction of a nearby source mass. …


Beurling-Lax Type Theorems In The Complex And Quaternionic Setting, Daniel Alpay, Irene Sabadini May 2017

Beurling-Lax Type Theorems In The Complex And Quaternionic Setting, Daniel Alpay, Irene Sabadini

Mathematics, Physics, and Computer Science Faculty Articles and Research

We give a generalization of the Beurling–Lax theorem both in the complex and quaternionic settings. We consider in the first case functions meromorphic in the right complex half-plane, and functions slice hypermeromorphic in the right quaternionic half-space in the second case. In both settings we also discuss a unified framework, which includes both the disk and the half-plane for the complex case and the open unit ball and the half-space in the quaternionic setting.


Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding May 2017

Studies In Mesoscopics And Quantum Microscopies, Zhenghao Ding, Gabriel C. Spalding

Honors Projects

This thesis begins with a foundational section on quantum optics. The single-photon detectors used in the first chapter were obtained through the Advanced Laboratory Physics Association (ALPhA), which brokered reduced cost for educational use, and the aim of the single-photon work presented in Chapter 1 is to develop modules for use in Illinois Wesleyan's instructional labs beyond the first year of university. Along with the American Association of Physics Teachers, ALPhA encourages capstone-level work, such as Chapter 1 of this honors thesis, which is explicitly designed to play the role of passing on, to a next generation of physics majors, …


Hardware Design Theory (Using Raspberry Pi), Anthony Kelly, Thomas Blum Dr. May 2017

Hardware Design Theory (Using Raspberry Pi), Anthony Kelly, Thomas Blum Dr.

Undergraduate Research

The concept for this research proposal is focused on achieving three main objectives:

1) To understand the logic and design behind the Raspberry Pi (RbP) mini-computer model, including: all hardware components and their functions, the capabilities [and limits] of the RbP, and the circuit engineering for these components.

2) To be able to, using the Python high-level language, duplicate, manipulate, and create RbP projects ranging from basic user-input and response systems to the theories behind more intricate and complicated observatory sensors.

3) Simultaneously, in order to combine a mutual shared interest of History and to blend in work done within …


Silver Nanoparticles As A Potential Solar Absorber, Benjamin Hardy May 2017

Silver Nanoparticles As A Potential Solar Absorber, Benjamin Hardy

Honors Projects

This work reports the development of Silver nanoparticles implanted into a polymer as a solar absorber. The plasmonic nature of silver nanoparticle allows for adjustments to be made in its UV-VIS-NIR absorbance spectrum. A combination of different sized/shaped particles could result in ideal absorption of the majority of the solar spectrum. Allotting this with the stability of a polymer leads to potential solids or solutions that could work as a solar absorber. Tests were also performed to determine whether or not UV-C irradiation during synthesis effects the characteristics of silver nanoparticles, in particular the absorbance. Successful synthesis of silver nanoparticle …


Key Encryption Through Quantum Optics, Madison Durrance, Zach Galberd, Abbey Savage, Tristan Cabrera, Josh Hoffman Apr 2017

Key Encryption Through Quantum Optics, Madison Durrance, Zach Galberd, Abbey Savage, Tristan Cabrera, Josh Hoffman

Georgia College Student Research Events

Cryptography has been around since the dawn of human civilization to send private messages for commercial, military, and political purposes. Some of the most important ciphers are the Vigenère cipher, the enigma, and the more modern RSA. Because of the development of the internet, private encryption has also become increasingly more important. The weakest link of encryption is the key creation and key distribution. A key is needed to encrypt and decipher codes and is needed by both the user and sender. A solution to this problem is the generation of quantum key distributions. In our experiment, we are now …


Mermin Inequalities For Perfect Correlations In Many-Qutrit Systems, Jay Lawrence Apr 2017

Mermin Inequalities For Perfect Correlations In Many-Qutrit Systems, Jay Lawrence

Dartmouth Scholarship

The existence of Greenberger-Horne-Zeilinger (GHZ) contradictions in many-qutrit systems was a long-standing theoretical question until its (affirmative) resolution in 2013. To enable experimental tests, we derive Mermin inequalities from concurrent observable sets identified in those proofs. These employ a weighted sum of observables, called M, in which every term has the chosen GHZ state as an eigenstate with eigenvalue unity. The quantum prediction for M is then just the number of concurrent observables, and this grows asymptotically as 2N/3 as the number of qutrits N→∞. The maximum classical value falls short for every N≥3, so that the quantum to classical …


On The Reality Of Mathematics, Brendan Ortmann Apr 2017

On The Reality Of Mathematics, Brendan Ortmann

Selected Student Publications

Mathematics is an integral cornerstone of science and society at large, and its implications and derivations should be considered. That mathematics is frequently abstracted from reality is a notion not countered, but one must also think upon its physical basis as well. By segmenting mathematics into its different, abstract philosophies and real-world applications, this paper seeks to peer into the space that mathematics seems to fill; that is, to understand how and why it works. Under mathematical theory, Platonism, Nominalism, and Fictionalism are analyzed for their validity and their shortcomings, in addition to the evaluation of infinities and infinitesimals, to …