Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physics

Uncertainty Analysis For Ccd-Augmented Casi® Brdf Measurement System, Todd V. Small, Samuel D. Butler, Michael A. Marciniak Nov 2021

Uncertainty Analysis For Ccd-Augmented Casi® Brdf Measurement System, Todd V. Small, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

This work presents a measurement uncertainty analysis for a system designed to simultaneously capture specular in-plane and out-of-plane bidirectional reflectance distribution function (BRDF) data with high spatial resolution by augmenting the Complete Angle Scatter Instrument (CASI®) with a charge-coupled device (CCD) camera. Various scatter flux, incident flux, scatter angle, and detector solid angle uncertainty contributions are considered and evaluated based on imperfectly known system parameters. In particular, incident flux temporal fluctuation, detector noise and non-linearity, and out-of-plane aperture misalignment considerations each require significant adjustment from original CASI® uncertainty analysis, and expressions for neutral density (ND) filter, scatter angle, and solid …


Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv Nov 2021

Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv

Faculty Publications

We present a new partially coherent source with spatiotemporal coupling. The stochastic light, which we call a spatiotemporal (ST) non-uniformly correlated (NUC) beam, combines space and time in an inhomogeneous (shift- or space-variant) correlation function. This results in a source that self-focuses at a controllable location in space-time, making these beams potentially useful in applications such as optical trapping, optical tweezing, and particle manipulation. We begin by developing the mutual coherence function for an ST NUC beam. We then examine its free-space propagation characteristics by deriving an expression for the mean intensity at any plane z ≥ 0. To validate …


Solar Cell Brdf Measurement And Modeling With Out-Of-Plane Data, Todd V. Small, Samuel D. Butler, Michael A. Marciniak Oct 2021

Solar Cell Brdf Measurement And Modeling With Out-Of-Plane Data, Todd V. Small, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

In this work, a CCD-augmented complete angle scatter instrument (CASI) with a visible red laser source was used to measure the BRDF of a commercially available solar cell designed for small satellites, simultaneously capturing both in-plane and out-of-plane data with high angular resolution surrounding the specular direction. The measurements exhibited three distinct scatter features: a central specular peak, an offset specular peak, and a diffraction pattern. The two peaks were caused by different material surfaces with slightly different normal directions, and the diffraction pattern arose from periodically-spaced metal conducting bars running in one direction across the solar cell surface. The …


Robust Method Of Determining Microfacet Brdf Parameters In The Presence Of Noise Via Recursive Optimization, Michael W. Bishop, Samuel D. Butler, Michael A. Marciniak Sep 2021

Robust Method Of Determining Microfacet Brdf Parameters In The Presence Of Noise Via Recursive Optimization, Michael W. Bishop, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

Accurate bidirectional reflectance distribution function (BRDF) models are essential for computer graphics and remote sensing performance. The popular microfacet class of BRDF models is geometric-optics-based and computationally inexpensive. Fitting microfacet models to scatterometry measurements is a common yet challenging requirement that can result in a model being fit as one of several unique local minima. Final model fit accuracy is therefore largely based on the quality of the initial parameter estimate. This makes for widely varying material parameter estimates and causes inconsistent performance comparisons across microfacet models, as will be shown with synthetic data. We proposed a recursive optimization method …


Data-Driven Algorithm To Classify The Degree Of Isotropy In The Bidirectional Reflectance Distribution Function, Anne W. Werkley, Samuel D. Butler, Todd V. Small, Michael A. Marciniak Sep 2021

Data-Driven Algorithm To Classify The Degree Of Isotropy In The Bidirectional Reflectance Distribution Function, Anne W. Werkley, Samuel D. Butler, Todd V. Small, Michael A. Marciniak

Faculty Publications

The bidirectional reflectance distribution function (BRDF) is used to describe reflectances of materials by calculating the ratio of the reflected radiance to the incident irradiance. While it was found that the isotropic models maintained symmetry about ϕs  =  π, such symmetry was not maintained about the θs  =  θi axis, except for close to the specular peak. This led to the development of a data-driven metric for how isotropic a BRDF measurement is. Research efforts centered around developing an algorithm that could determine material anisotropy without having to fit to models. This algorithm was tested using high …


Re-Visiting Acoustic Sounding To Advance The Measurement Of Optical Turbulence, Steven T. Fiorino, Santasri Bose-Pillai, Kevin J. Keefer Aug 2021

Re-Visiting Acoustic Sounding To Advance The Measurement Of Optical Turbulence, Steven T. Fiorino, Santasri Bose-Pillai, Kevin J. Keefer

Faculty Publications

Optical turbulence, as determined by the widely accepted practice of profiling the temperature structure constant, C2T, via the measurement of ambient atmospheric temperature gradients, can be found to differ quite significantly when characterizing such gradients via thermal-couple differential temperature sensors as compared to doing so with acoustic probes such as those commonly used in sonic anemometry. Similar inconsistencies are observed when comparing optical turbulence strength derived via C2T as compared to those through direct optical or imaging measurements of small fluctuations of the index of refraction of air (i.e., scintillation). These irregularities are especially apparent …


Multi-Gaussian Random Variables For Modeling Optical Phenomena, Olga Korotkova, Milo W. Hyde Iv Aug 2021

Multi-Gaussian Random Variables For Modeling Optical Phenomena, Olga Korotkova, Milo W. Hyde Iv

Faculty Publications

A generalization of the classic Gaussian random variable to the family of multi-Gaussian (MG) random variables characterized by shape parameter M > 0, in addition to the mean and the standard deviation, is introduced. The probability density function (PDF) of the MG family members is an alternating series of Gaussian functions with suitably chosen heights and widths. In particular, for integer values of M, the series has a finite number of terms and leads to flattened profiles, while reducing to the classic Gaussian PDF for M = 1. For non-integer, positive values of M, a convergent infinite series of …


Zernike Integrated Partial Phase Error Reduction Algorithm, Stephen C. Cain Aug 2021

Zernike Integrated Partial Phase Error Reduction Algorithm, Stephen C. Cain

Faculty Publications

A modification to the error reduction algorithm is reported in this paper for determining the prescription of an imaging system in terms of Zernike polynomials. The technique estimates the Zernike coefficients of the optical prescription as part of a modified Gerchberg-Saxton iteration combined with a new gradient-based phase unwrapping algorithm. Zernike coefficients are updated gradually as the error reduction algorithm converges by recovering the partial pupil phase that differed from the last known pupil phase estimate. In this way the wrapped phase emerging during each iteration of the error reduction algorithm does not represent the entire wrapped phase of the …


Beam Formation And Vernier Steering Off Of A Rough Surface, Eric K. Nagamine, Kenneth W. Burgi, Samuel D. Butler Aug 2021

Beam Formation And Vernier Steering Off Of A Rough Surface, Eric K. Nagamine, Kenneth W. Burgi, Samuel D. Butler

Faculty Publications

Wavefront shaping can refocus light after it reflects from an optically rough surface. One proposed use case of this effect is in indirect imaging; if any rough surface could be turned into an illumination source, objects out of the direct line of sight could be illuminated. In this paper, we demonstrate the superior performance of a genetic algorithm compared to other iterative feedback-based wavefront shaping algorithms in achieving reflective inverse diffusion for a focal plane system. Next, the ability to control the pointing direction of the refocused beam with high precision over a narrow angular range is demonstrated, though the …


Estimating Turbulence Distribution Over A Heterogeneous Path Using Time‐Lapse Imagery From Dual Cameras, Benjamin Wilson, Santasri Bose-Pillai, Jack E. Mccrae, Kevin J. Keefer, Steven T. Fiorino Jul 2021

Estimating Turbulence Distribution Over A Heterogeneous Path Using Time‐Lapse Imagery From Dual Cameras, Benjamin Wilson, Santasri Bose-Pillai, Jack E. Mccrae, Kevin J. Keefer, Steven T. Fiorino

Faculty Publications

Knowledge of turbulence distribution along an experimental path can help in effective turbulence compensation and mitigation. Although scintillometers are traditionally used to measure the strength of turbulence, they provide a path-integrated measurement and have limited operational ranges. A technique to profile turbulence using time-lapse imagery of a distant target from spatially separated cameras is presented here. The method uses the turbulence induced differential motion between pairs of point features on a target, sensed at a single camera and between cameras to extract turbulence distribution along the path. The method is successfully demonstrated on a 511 m almost horizontal path going …


Twisted Spatiotemporal Optical Vortex Random Fields, Milo W. Hyde Iv Apr 2021

Twisted Spatiotemporal Optical Vortex Random Fields, Milo W. Hyde Iv

Faculty Publications

We present twisted spatiotemporal optical vortex (STOV) beams, which are partially coherent light sources that possess a coherent optical vortex and a random twist coupling their space and time dimensions. These beams have controllable partial coherence and transverse orbital angular momentum (OAM), which distinguishes them from the more common spatial vortex and twisted beams (known to carry longitudinal OAM) in the literature and should ultimately make them useful in applications such as optical communications and optical tweezing. We present the mathematical analysis of twisted STOV beams, deriving the mutual coherence function and linear and angular momentum densities. We simulate the …


Achieving The Shot-Noise Limit Using Experimental Multi-Shot Digital Holography Data, Douglas E. Thornton, Cameron J. Radosevich, Samuel Horst, Mark F. Spencer Mar 2021

Achieving The Shot-Noise Limit Using Experimental Multi-Shot Digital Holography Data, Douglas E. Thornton, Cameron J. Radosevich, Samuel Horst, Mark F. Spencer

Faculty Publications

In this paper, we achieve the shot-noise limit using straightforward image-post-processing techniques with experimental multi-shot digital holography data (i.e., off-axis data composed of multiple noise and speckle realizations). First, we quantify the effects of frame subtraction (of the mean reference-only frame and the mean signal-only frame from the digital-hologram frames), which boosts the signal-to-noise ratio (SNR) of the baseline dataset with a gain of 2.4 dB. Next, we quantify the effects of frame averaging, both with and without the frame subtraction. We show that even though the frame averaging boosts the SNR by itself, the frame subtraction and the stability …


Independently Controlling Stochastic Field Realization Magnitude And Phase Statistics For The Construction Of Novel Partially Coherent Sources, Milo W. Hyde Iv Feb 2021

Independently Controlling Stochastic Field Realization Magnitude And Phase Statistics For The Construction Of Novel Partially Coherent Sources, Milo W. Hyde Iv

Faculty Publications

In this paper, we present a method to independently control the field and irradiance statistics of a partially coherent beam. Prior techniques focus on generating optical field realizations whose ensemble-averaged autocorrelation matches a specified second-order field moment known as the cross-spectral density (CSD) function. Since optical field realizations are assumed to obey Gaussian statistics, these methods do not consider the irradiance moments, as they, by the Gaussian moment theorem, are completely determined by the field’s first and second moments. Our work, by including control over the irradiance statistics (in addition to the CSD function), expands existing synthesis approaches and allows …


On-Chip Silicon Photonic Controllable 2 × 2 Four-Mode Waveguide Switch, Cao Dung Truong, Duy Nguyen Thi Hang, Hengky Chandrahalim, Minh Tuan Trinh Jan 2021

On-Chip Silicon Photonic Controllable 2 × 2 Four-Mode Waveguide Switch, Cao Dung Truong, Duy Nguyen Thi Hang, Hengky Chandrahalim, Minh Tuan Trinh

Faculty Publications

Multimode optical switch is a key component of mode division multiplexing in modern high-speed optical signal processing. In this paper, we introduce for the first time a novel 2 × 2 multimode switch design and demonstrate in the proof-of-concept. The device composes of four Y-multijunctions and 2 × 2 multimode interference coupler using silicon-on-insulator material with four controllable phase shifters. The shifters operate using thermo-optic effects utilizing Ti heaters enabling simultaneous switching of the optical signal between the output ports on four quasi-transverse electric modes with the electric power consumption is in order of 22.5 mW and the switching time …