Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 55

Full-Text Articles in Physics

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin Dec 2017

Artificial Olfactory System For Multi-Component Analysis Of Gas Mixtures., Alexander Aleksandrovich Larin

Electronic Theses and Dissertations

Gas analysis is an important part of our world and gas sensing technology is becoming more essential for various aspects of our life. A novel approach for gas mixture analysis by using portable gas chromatography in combination with an array of highly integrated and selective metal oxide (MOX) sensors has been studied. We developed a system with small size (7 x 13 x 16 inches), low power consumption (~10 W) and absence of special carrier gases designed for portable field analysis (assuming apriori calibration). Low ppb and even sub-ppb level of detection for some VOCs was achieved during the analysis …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Structural And Elastic Properties Of Degenerate Sno Monolayers At Finite Temperature, Afsana Sharmin Dec 2017

Structural And Elastic Properties Of Degenerate Sno Monolayers At Finite Temperature, Afsana Sharmin

Graduate Theses and Dissertations

Chalcogen-based layered superconductors with a litharge structure such as FeS and FeSe mono-layers undergo structural and superconducting phase transitions that are tunable by doping. Representing another material platform with a litharge structure but without valence d-electrons, SnO monolayers also display a structural ground state with a degenerate rectangular unit cell at zero temperature and a charge-tunable energy barrier that leads to a thermally-controllable structural phase change. Doped SnO monolayers with rectangular degenerate unit cells give rise to two-dimensional multiferroicity. Their two-dimensional elastic energy landscape adopts a basic analytic expression that is employed to discuss this structural transition. The results contained …


Behavior Of Na+-Polystyrene Sulfonate At The Interface With Single-Walled Carbon Nanotubes (Swnts) And Its Implication To Swnt Suspension Stability, Tabbetha A. Dobbins, Richard Chevious, Yuri Lvov Nov 2017

Behavior Of Na+-Polystyrene Sulfonate At The Interface With Single-Walled Carbon Nanotubes (Swnts) And Its Implication To Swnt Suspension Stability, Tabbetha A. Dobbins, Richard Chevious, Yuri Lvov

Tabbetha A. Dobbins

The assembly of sodium polystyrene sulfonate (Na+-PSS) at the surface of single-walled carbon nanotubes (SWNTs) in pH 3 aqueous solution is described. Rather than forming linear or sheet-like chain morphologies over SWNT surfaces, Na+-PSS adopts a spherically collapsed conformation believed to be the result of cation (either Na+ or H+) condensation onto the ionized polymer chain. It is well reported that cations (and also anions) adsorb preferentially onto single-walled and multi-walled carbon nanotube surfaces leading to an increased ion concentration in the near surface regions relative to the bulk solution. This work provides experimental evidence for preferentially absorbed cation condensation …


Study Of Morphological Changes In Mgh2 Destabilized Libh4 Systems Using Computed X-Ray Microtomography, Tabbetha A. Dobbins, Shathabish Narasegowda, Leslie G. Butler Nov 2017

Study Of Morphological Changes In Mgh2 Destabilized Libh4 Systems Using Computed X-Ray Microtomography, Tabbetha A. Dobbins, Shathabish Narasegowda, Leslie G. Butler

Tabbetha A. Dobbins

The objective of this study was to apply three-dimensional x-ray microtomographic imaging to understanding morphologies in the diphasic destabilized hydride system: MgH2 and LiBH4. Each of the single phase hydrides as well as two-phase mixtures at LiBH4:MgH2 ratios of 1:3, 1:1, and 2:1 were prepared by high energy ball milling for 5 minutes (with and without 4 mol % TiCl3 catalyst additions). Samples were imaged using computed microtomography in order to (i) establish measurement conditions leading to maximum absorption contrast between the two phases and (ii) determine interfacial volume. The optimal energy for measurement was determined to be 15 keV …


Manipulating Electromagnetic Waves With Enhanced Functionalities Using Nonlinear And Chiral Metamaterials, Sinhara Rishi Malinda Silva Nov 2017

Manipulating Electromagnetic Waves With Enhanced Functionalities Using Nonlinear And Chiral Metamaterials, Sinhara Rishi Malinda Silva

USF Tampa Graduate Theses and Dissertations

Metamaterials are artificial structures, which periodically arranged to exhibit fascinating electromagnetic properties, not existing in nature. A great deal of research in the field of metamaterial was conducted in a linear regime, where the electromagnetic responses are independent of the external electric or magnetic fields. Unfortunately, in linear regime the desired properties of metamaterials have only been achieved within a narrow bandwidth, around a fixed frequency. Therefore, nonlinearity is introduced into metamaterials by merging meta-atoms with well-known nonlinear materials. Nonlinear metamaterials are exploited in this dissertation to introduce and develop applications in microwave frequency with broadband responses. The nonlinearity was …


Growth, Characterization, And Function Of Ferroelectric, Ferromagnetic Thin Films And Their Heterostructures, Mahesh Hordagoda Nov 2017

Growth, Characterization, And Function Of Ferroelectric, Ferromagnetic Thin Films And Their Heterostructures, Mahesh Hordagoda

USF Tampa Graduate Theses and Dissertations

With recent trends in miniaturization in the electronics sector, ferroelectrics have gained popularity due to their applications in non-volatile RAM. Taking one step further researchers are now exploring multiferroic devices that overcome the drawbacks of ferroelectric (FE) and ferromagnetic (FM) RAM’s while retaining the advantages of both. The work presented in this dissertation focuses on the growth of FE and FM thin film structures. The primary goals of this work include, (1) optimization of the parameters in the pulsed laser deposition (PLD) of FE and FM films and their heterostructures, (2) development of a structure-property relation that leads to enhancements …


Gamma-Radiation Induced Corrosion Of Alloy 800, Mojtaba Momeni Nov 2017

Gamma-Radiation Induced Corrosion Of Alloy 800, Mojtaba Momeni

Electronic Thesis and Dissertation Repository

This thesis presents a newly developed mechanism and predictive model for the corrosion of Alloy 800. The Fe-Cr-Ni Alloy (Incoloy 800) is mainly used for steam generator (SG) tubing in CANDU and PWR reactors and is a candidate material for the proposed Canadian Supercritical Water Reactor (SCWR) in which it will be exposed to extreme conditions of high radiation flux and large temperature gradients. The influence of gamma radiation and water chemistry conditions on the corrosion behaviour of Alloy 800 are studied in this work. Ionizing radiation creates reducing (•eaq, •H, •O2-) and oxidizing …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze Oct 2017

Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze

Faculty Publications, Chemistry

When investigating low-frequency (0.1 Hz) oscillations of multiphase high-temperature cuprate superconductors (HTCS) Bi1,7Pb0,3Sr2Ca(n-1)CunOy (n=2-30), a wide attenuation peak (ΔT~100 К) with a maximum at Т≈200 К was detected. This peak was particularly pronounced in field cooling (FC) experiments, i.e. after abrupt cooling of the sample in the external magnetic field at the temperature Т<Тс with subsequent slow warming up to room temperature with invariance of the applied field. The attenuation peak height depended on the preliminaryorientation (before cooling) of the samples θ in the measured permanent magnetic field Н. On the one hand, it is well known that, after the FC procedure and subsequent slow warming up, at the temperatures close to the critical temperature Тс, the attenuation peak associated with “melting” of the Abrikosov frozen vortex structure and its disappearance at Т >Тс is detected in monophase samples. At the same time, in most multiphase bismuth HTCS samples, synthesized using solar energy and superfast quenching of the melt, the attenuation peak with the maximum at Т≈200 К was observed.Depending on the conditions of synthesis, the attenuation peak could …


Use Of A Novel Infrared Wavelength-Tunable Laser Mueller-Matrix Polarimetric Scatterometer To Measure Nanostructured Optical Materials, Jason C. Vap, Stephen E. Nauyoks, Michael R. Benson, Michael A. Marciniak Oct 2017

Use Of A Novel Infrared Wavelength-Tunable Laser Mueller-Matrix Polarimetric Scatterometer To Measure Nanostructured Optical Materials, Jason C. Vap, Stephen E. Nauyoks, Michael R. Benson, Michael A. Marciniak

Faculty Publications

Nanostructured optical materials, for example, metamaterials, have unique spectral, directional, and polarimetric properties. Samples designed and fabricated for infrared (IR) wavelengths have been characterized using broadband instruments to measure specular polarimetric transmittance or reflectance as in ellipsometry or integrated hemisphere transmittance or reflectance. We have developed a wavelength-tunable IR Mueller-matrix (Mm) polarimetric scatterometer which uses tunable external-cavity quantum-cascade lasers (EC-QCLs) to tune onto and off of the narrowband spectral resonances of nanostructured optical materials and performed full polarimeteric and directional evaluation to more fully characterize their behavior. Using a series of EC-QCLs, the instrument is tunable over 4.37-6.54 μm wavelengths …


Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami Sep 2017

Nanowire-Based Light-Emitting Diodes: A New Path Towards High-Speed Visible Light Communication, Mohsen Nami

Physics & Astronomy ETDs

Nano-scale optoelectronic devices have gained significant attention in recent years. Among these devices are semiconductor nanowires, whose dimeters range from 100 to 200 nm. Semiconductor nanowires can be utilized in many different applications including light-emitting diodes and laser diodes. Higher surface to volume ratio makes nanowire-based structures potential candidates for the next generation of photodetectors, sensors, and solar cells. Core-shell light-emitting diodes based on selective-area growth of gallium nitride (GaN) nanowires provide a wide range of advantages. Among these advantages are access to non-polar m-plane sidewalls, higher active region area compared to conventional planar structures, and reduction of threading …


Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo Sep 2017

Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo

Dissertations, Theses, and Capstone Projects

In order to improve future generations of dielectric capacitors a deeper understanding of voltage-induced dielectric breakdown and electrical energy storage limitations is required. This dissertation presents the use of far-field optical second harmonic generation (SHG) polarimetry for probing structural defects and polar domains in linear and nonlinear perovskite dielectric ceramics. We investigated the formation of electric field-induced structural distortions at pristine Fe-doped SrTiO3 (Fe:STO) electrode interfaces, structural defect and strain formation due to oxygen vacancy migration in electrodegraded Fe:STO single crystals, and mixed tetragonal and rhombohedral phase domains in ferroelectric Zr-doped BaTiO3 (BZT) films exhibiting excellent …


Interplay Of Quantum Size Effect, Anisotropy And Surface Stress Shapes The Instability Of Thin Metal Films, Mikhail Khenner Aug 2017

Interplay Of Quantum Size Effect, Anisotropy And Surface Stress Shapes The Instability Of Thin Metal Films, Mikhail Khenner

Mathematics Faculty Publications

Morphological instability of a planar surface ([111], [011], or [001]) of an ultra-thin metal film is studied in a parameter space formed by three major effects (the quantum size effect, the surface energy anisotropy and the surface stress) that influence a film dewetting. The analysis is based on the extended Mullins equation, where the effects are cast as functions of the film thickness. The formulation of the quantum size effect (Z. Zhang et al., PRL 80, 5381 (1998)) includes the oscillation of the surface energy with thickness caused by electrons confinement. By systematically comparing the effects, their contributions into the …


First-Principles Study Of Point Defect Behavior At Interfaces And In-Plane Strain Fields, Jianqi Xi Aug 2017

First-Principles Study Of Point Defect Behavior At Interfaces And In-Plane Strain Fields, Jianqi Xi

Doctoral Dissertations

Interfaces in solid materials are the so-called boundaries, separating crystals with the same structure and chemistry but different orientations, e.g. grain boundaries (GBs), different stacking sequences, e.g. stacking faults (SFs), or crystals with different structures and/or chemistries as well as orientations, e.g. the interface between substrate and thin film. In this study, first-principles calculations are used to investigate the defect behavior at different interfaces and in-plane strain fields, such as stacking fault (SF) in silicon carbide (SiC), in-plane strain field near interfaces in potassium tantalate (KTaO3), and grain boundary in ceria (CeO2).

Results show that the …


On-Chip, High-Sensitivity Temperature Sensors Based On Dye-Doped Solid-State Polymer Microring Lasers, Lei Wan, Hengky Chandrahalim, Cong Chen, Qiushu Chen, Ting Mei, Yuji Oki, Naoya Nishimura, Lingjie Jay Guo, Xudong Fan Aug 2017

On-Chip, High-Sensitivity Temperature Sensors Based On Dye-Doped Solid-State Polymer Microring Lasers, Lei Wan, Hengky Chandrahalim, Cong Chen, Qiushu Chen, Ting Mei, Yuji Oki, Naoya Nishimura, Lingjie Jay Guo, Xudong Fan

Faculty Publications

We developed a chip-scale temperature sensor with a high sensitivity of 228.6 pm/°C based on a rhodamine 6G (R6G)-doped SU-8 whispering-gallery mode microring laser. The optical mode was largely distributed in a polymer core layer with a 30 μm height that provided detection sensitivity, and the chemically robust fused-silica microring resonator host platform guaranteed its versatility for investigating different functional polymer materials with different refractive indices. As a proof of concept, a dye-doped hyperbranched polymer (TZ-001) microring laser-based temperature sensor was simultaneously developed on the same host wafer and characterized using a free-space optics measurement setup. Compared to TZ-001, the …


Electron Paramagnetic Resonance Study Of Neutral Mg Acceptors In Β-Ga2O3 Crystals, Brant E. Kananen, Larry E. Halliburton, Elizabeth M. Scherrer, K. T. Stevens, G. K. Foundos, K. B. Chang, Nancy C. Giles Aug 2017

Electron Paramagnetic Resonance Study Of Neutral Mg Acceptors In Β-Ga2O3 Crystals, Brant E. Kananen, Larry E. Halliburton, Elizabeth M. Scherrer, K. T. Stevens, G. K. Foundos, K. B. Chang, Nancy C. Giles

Faculty Publications

Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors (Mg0Ga) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors (Mg−Ga). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion …


Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson Aug 2017

Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon …


Suppression Of Magnetism In Ba5Alir2O11: Interplay Of Hund's Coupling, Molecular Orbitals, And Spin-Orbit Interaction, Sergey V. Streltsov, Gang Cao, Daniel I. Khomskii Jul 2017

Suppression Of Magnetism In Ba5Alir2O11: Interplay Of Hund's Coupling, Molecular Orbitals, And Spin-Orbit Interaction, Sergey V. Streltsov, Gang Cao, Daniel I. Khomskii

Center for Advanced Materials Faculty Publications

The electronic and magnetic properties of Ba5AlIr2O11 containing Ir-Ir dimers are investigated using the generalized gradient approximation (GGA) and GGA + spin-orbit coupling (SOC) calculations. We found that the strong suppression of the magnetic moment in this compound recently found by Terzic et al. [Phys. Rev. B 91, 235147 (2015)] is not due to charge ordering but is related to the joint effect of the spin-orbit interaction and strong covalency, resulting in the formation of metal-metal bonds. They conspire and act against the intraatomic Hund's rule exchange interaction to reduce total magnetic moment of the …


Ismar / Rmcmr 2017 Abstract Book - Joint Conference Of The International Society Of Magnetic Resonance, The Rocky Mountain Conference On Epr, And The Rocky Mountain Conference On Magnetic Resonance Jul 2017

Ismar / Rmcmr 2017 Abstract Book - Joint Conference Of The International Society Of Magnetic Resonance, The Rocky Mountain Conference On Epr, And The Rocky Mountain Conference On Magnetic Resonance

Rocky Mountain Conference on Magnetic Resonance

Abstracts from the 59th annual meeting of the Rocky Mountain Conference on Magnetic Resonance, hosted jointly with the International Society of Magnetic Resonance and the Rocky Mountain Conference on EPR. Held in Quebec City, Canada, July 23-28, 2017.


Elastic Properties Of Superconductors And Materials With Weakly Correlated Spins, Christian Binek Jul 2017

Elastic Properties Of Superconductors And Materials With Weakly Correlated Spins, Christian Binek

Christian Binek Publications

It is shown that in the ergodic regime, the temperature dependence of Young’s modulus is solely determined by the magnetic properties of a material. For the large class of materials with paramagnetic or diamagnetic response, simple functional forms of the temperature derivative of Young’s modulus are derived and compared with experimental data and empirical results. Superconducting materials in the Meissner phase are ideal diamagnets. As such, they display remarkable elastic properties. Constant diamagnetic susceptibility gives rise to a temperature independent elastic modulus for ceramic and single crystalline superconductors alike. The thermodynamic approach established in this report, paves the way to …


Photopolymerization Synthesis Of Magnetic Nanoparticle Embedded Nanogels For Targeted Biotherapeutic Delivery, Daniel Jonwal Denmark Jun 2017

Photopolymerization Synthesis Of Magnetic Nanoparticle Embedded Nanogels For Targeted Biotherapeutic Delivery, Daniel Jonwal Denmark

USF Tampa Graduate Theses and Dissertations

Conventional therapeutic techniques treat the patient by delivering a biotherapeutic to the entire body rather than the target tissue. In the case of chemotherapy, the biotherapeutic is a drug that kills healthy and diseased cells indiscriminately which can lead to undesirable side effects. With targeted delivery, biotherapeutics can be delivered directly to the diseased tissue significantly reducing exposure to otherwise healthy tissue. Typical composite delivery devices are minimally composed of a stimuli responsive polymer, such as poly(N-isopropylacrylamide), allowing for triggered release when heated beyond approximately 32 °C, and magnetic nanoparticles which enable targeting as well as provide a mechanism for …


Highly Directional Receiver And Source Antennas Using Photonic Band Gap Crystals, Rana Biswas, Gary L. Tuttle, Ekmel Ozbay, Burak Temelkuran, Mihail Sigalas, Kai-Ming Ho Jun 2017

Highly Directional Receiver And Source Antennas Using Photonic Band Gap Crystals, Rana Biswas, Gary L. Tuttle, Ekmel Ozbay, Burak Temelkuran, Mihail Sigalas, Kai-Ming Ho

Gary Tuttle

A directional antenna made with photonic band gap structures has been presented. The directional antenna is formed with two photonic band gap structures oriented back to back and separated from each other by a distance to form a resonant cavity between the photonic band gap structures. An antenna element is placed in the resonant cavity. The resonant frequency of the cavity is tuned by adjusting the distance between the photonic band gap structures. The resonant cavity can be asymmetrical or symmetrical.


Weak Anti-Localization And Quantum Oscillations Of Surface States In Topological Insulator Bi2se2te, Lihong Bao, Liang He, Nicholas R. Meyer, Xufeng Kou, Peng Zhang, Zhi-Gang Chen, Alexei V. Fedorov, Trevor M. Riedemann, Thomas A. Lograsso, Kang L. Wang, Gary Tuttle, Faxian Xiu Jun 2017

Weak Anti-Localization And Quantum Oscillations Of Surface States In Topological Insulator Bi2se2te, Lihong Bao, Liang He, Nicholas R. Meyer, Xufeng Kou, Peng Zhang, Zhi-Gang Chen, Alexei V. Fedorov, Trevor M. Riedemann, Thomas A. Lograsso, Kang L. Wang, Gary Tuttle, Faxian Xiu

Gary Tuttle

Topological insulators, a new quantum state of matter, create exciting opportunities for studying topological quantum physics and for exploring spintronic applications due to their gapless helical metallic surface states. Here, we report the observation of weak anti-localization and quantum oscillations originated from surface states in Bi2Se2Te crystals. Angle-resolved photoemission spectroscopy measurements on cleaved Bi2Se2Te crystals show a well-defined linear dispersion without intersection of the conduction band. The measured weak anti-localization effect agrees well with the Hikami-Larkin-Nagaoka model and the extracted phase coherent length shows a power-law dependence with temperature ( ∼T−0.44), indicating the presence of the surface states. …


The Magnetic, Electrical And Structural Properties Of Copper-Permalloy Alloys, Makram A. Qader, A. Vishina, Lei Yu, Cougar Garcia, Rakesh K. Singh, Nicholas D. Rizzo, Mengchu Huang, Ralph Chamberlin, Kirill Belashchenko, Mark Van Schilfgaarde, N. Newman Jun 2017

The Magnetic, Electrical And Structural Properties Of Copper-Permalloy Alloys, Makram A. Qader, A. Vishina, Lei Yu, Cougar Garcia, Rakesh K. Singh, Nicholas D. Rizzo, Mengchu Huang, Ralph Chamberlin, Kirill Belashchenko, Mark Van Schilfgaarde, N. Newman

Kirill Belashchenko Publications

Copper-permalloy [Cu1–x(Ni80Fe20)x] alloy films were deposited by co-sputtering and their chemical, structural, magnetic, and electrical properties were characterized. These films are found to have favorable weak ferromagnetic properties for low temperature magnetoelectronic applications. Our results show that by varying the composition, the saturation magnetization (Ms) can be tuned from 700 emu/cm3 to 0 and the Curie temperature (Tc), can be adjusted from 900 K to 0 K. The Ms and Tc are found to scale linearly between x = 25% and 100%. Electronic structure calculations …


Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck May 2017

Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck

Senior Theses

This paper explores the relationship between the operating temperature and electricity production of a simple heat engine. A Stirling engine was designed and constructed which runs on solar thermal energy collected by a Fresnel lens. The surface area of the solar collector was varied. This manipulated the operating temperature of the Stirling engine in order to measure power output. The mechanical energy from the engine was converted to electricity using a DC motor running in reverse, acting like a generator, in conjunction with an Arduino for data collection. Although adjustments must be made in order to improve the efficiency of …


Thin Film Thermal Deposition At Various Pressures, James Kela Yee Keen Grace May 2017

Thin Film Thermal Deposition At Various Pressures, James Kela Yee Keen Grace

Senior Theses

This research was to verify the hypothesis that resistivity of metal's thin film deposited in a low-pressure environment is the same as its solid material. Thermal Evaporation is a thin film deposition technique in which metal inside a vacuum is evaporated, then deposited onto a surface. Higher quality metal films are deposited when the vacuum pressure is lower. At higher pressures, more air molecules are trapped within the layers of metal, thus increasing scattering sites and increasing the resistance. However, reaching a lower pressure requires more time and effort. In this research, films were deposited at various pressures and resistivities …


Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams May 2017

Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams

Senior Theses

A solar cell powered go-kart has been built and tested. The result shows using solar energy alone cannot meet the requirement of running a regular passenger car. This is due to the limited surface area of the passenger car. This thesis also discusses the operating principles of solar panels, the physics of P type and N type semiconductors, and the formation of the PN junction, as well as the solar current. Modifications of an existing go-kart are described in detail in this thesis. Suggestions for making green vehicles are discussed as well.


Observing Orbital Angular Momentum Transfer From Electron Vortex Beams To Matter, Hannah Devyldere May 2017

Observing Orbital Angular Momentum Transfer From Electron Vortex Beams To Matter, Hannah Devyldere

Senior Theses

It is possible to produce electron beams with non-zero orbital angular momentum. Such beams, known as electron vortex beams, are theoretically able to transfer their orbital angular momenta to matter, causing the matter to rotate. Nanoparticles in an aqueous solution were observed with an electron vortex beam to detect the transfer of orbital angular momentum in a low-friction environment. Observing the transfer of orbital angular momentum to particles in solution is difficult due to the necessity of imaging the particles through a liquid and the random movement of particles in the solution. Thus, orbital angular momentum transfer to matter could …