Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Producing And Measuring Oscillatory Shear In A Novel Microfluidic Chip, Sanaz Lordfard, Daniel Lorusso, Tamie L. Poepping, Hristo N Nikolov, Kayla Soon, Stephen Sims, Jeffrey Dixon, David Holdsworth Aug 2022

Producing And Measuring Oscillatory Shear In A Novel Microfluidic Chip, Sanaz Lordfard, Daniel Lorusso, Tamie L. Poepping, Hristo N Nikolov, Kayla Soon, Stephen Sims, Jeffrey Dixon, David Holdsworth

Undergraduate Student Research Internships Conference

Purpose: To demonstrate the effectiveness of a novel microfluidic device mimicking oscillatory blood flow, allowing cell biologists to examine how endothelial cells respond to a range of oscillatory shear stress levels.

Methods: The microfluidic chip consists of a circular-shaped reservoir, leading to a rectangular channel that is examined under a microscope. The plunger is connected to a speaker system and oscilloscope, allowing the plunger to apply a range of frequencies (5-60Hz) and voltages (5-10 V, leading to a variety in oscillation amplitudes) to the reservoir region. 1.1 um fluorescent particles diluted in distilled water were used for tracking. Processing was …


Polymer Translocation Through A Nanopore: Controlling Capture Conformations Using An Electrical Force, Matthew D. Wei Aug 2022

Polymer Translocation Through A Nanopore: Controlling Capture Conformations Using An Electrical Force, Matthew D. Wei

Undergraduate Student Research Internships Conference

Solid-state nanopore sensors remain a promising solution to the rising global demand for genome sequencing. These single-molecule sensing technologies require single-file translocation for high resolution and accurate detection. This study uses molecular dynamics-lattice Boltzmann simulations of the capture of a single polymer chain under pressure-driven hydrodynamic flow to investigate a method of increasing the single-file capture and translocation rate. By using a model force of two oppositely electrically charged rings, single-file capture in hydrodynamic flow can be amplified from about 45% to 51.5%. This paper found that the optimal values of force location, force strength, and system pressure/flow velocity are …


Travelling Wave Solutions On A Cylindrical Geometry, Karnav R. Raval Aug 2022

Travelling Wave Solutions On A Cylindrical Geometry, Karnav R. Raval

Undergraduate Student Research Internships Conference

Fluid equations are generally quite difficult and computationally-expensive to solve. However, if one is primarily interested in how the surface of the fluid deforms, we can re-formulate the governing equations purely in terms of free surface variables. Reformulating equations in such a way drastically cuts down on computational cost, and may be useful in areas such as modelling blood flow. Here, we study one such free-boundary formulation on a cylindrical geometry.


Physical Investigation Of Downburst Winds And Applicability To Full Scale Events, Federico Canepa Feb 2022

Physical Investigation Of Downburst Winds And Applicability To Full Scale Events, Federico Canepa

Electronic Thesis and Dissertation Repository

Thunderstorm winds, i.e. downbursts, are cold descending currents originating from cumulonimbus clouds which, upon the impingement on the ground, spread radially with high intensities. The downdraft phase of the storm and the subsequent radial outflow that is formed can cause major issues for aviation and immense damages to ground-mounted structures. Thunderstorm winds present characteristics completely different from the stationary Gaussian synoptic winds, which largely affect the mid-latitude areas of the globe in the form of extra-tropical cyclones. Downbursts are very localized winds in both space and time. It follows that their statistical investigation, by means of classical full scale anemometric …