Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

High Speed Control Of Atom Transfer Sequence From Magneto-Optical To Dipole Trap For Quantum Computing, Jason Garvey Schray Dec 2014

High Speed Control Of Atom Transfer Sequence From Magneto-Optical To Dipole Trap For Quantum Computing, Jason Garvey Schray

Physics

Two circuits were designed, built, and tested for the purpose of aiding in the transfer of 87Rb atoms from a MOT to dipole traps and for characterizing the final dipole traps. The first circuit was a current switch designed to quickly turn the magnetic fields of the MOT off. The magnetic coil switch was able to reduce the magnetic field intensity to 5 % of its initial value after 81 μs. The second circuit was an analog signal switch designed to turn the modulation signal of an AOM off. The analog switch was able to reduce the modulation signal intensity …


Analysis And Optimization Of The Scheffler Solar Concentrator, Simone Alberti Dec 2014

Analysis And Optimization Of The Scheffler Solar Concentrator, Simone Alberti

Master's Theses

The Scheffler reflector is a new solar concentrator design which maintains a fixed focus while only having a single axis tracking mechanism. This design makes the construction and operation of high temperature solar concentrators accessible to developing nations. In this project, I wrote computer simulation codes to better understand the dynamics and the effect of deformation or deviations from ideal conditions in order to define necessary manufacturing and operational tolerances. These tools and knowledge drove the prototyping of new reflector concepts by myself and other students on my team. A fiberglass prototype was able to drive the cost of a …


Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter Aug 2014

Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter

STAR Program Research Presentations

NASA’s Cold Atom Lab (CAL) is a multi-user facility designed to study ultra-cold quantum gases in the microgravity environment of the International Space Station (ISS). One of the main goals of CAL is to explore the unknown territory of extremely low temperatures—possibly as low as the picokelvin range!—where new and fascinating quantum phenomena can be observed. At such temperatures matter stops behaving as particles and instead becomes macroscopic matter waves. CAL will be remotely controlled to perform a multitude of experiments and is scheduled to launch in 2016. In order to anticipate problems that might occur during and post-launch, including …


A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle Aug 2014

A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle

STAR Program Research Presentations

One of the current programs at SLAC National Accelerator Laboratory is the Linac Coherent Light Source, or LCLS. Using the existing hardware of the last third of their linear accelerator (or “linac”), SLAC has created one of the most energetic X-ray free electron lasers (or “FEL”). Since 2009, LCLS has used this FEL to perform a wide range of experiments across all sciences, most notably ultrafast filming at the molecular scale. As requests for beam-time with this laser increases, SLAC is purposing a linac upgrade to better match this demand. This upgrade, named LCLS-II, will replace existing copper radio frequency …


Does A Plastron Improve Heat Transfer?, Madani A. Khan, Jeffrey Alston, Andrew Guenthner Aug 2014

Does A Plastron Improve Heat Transfer?, Madani A. Khan, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Superamphiphobic surfaces strongly repel both water and oils. In this work, aluminum coupons are processed by sanding with various grit of sand paper to impart microscale roughness. Subsequent submersion of the aluminum substrate in boiling water grows nanoscale grass-like structures. The oxide layer of Al is slightly soluble in water. During a fast diffusion/equilibrium, Al2O3 nanograss grows on the surface. A low energy coating is then deposited on the surface. The micro and nanoscale features create re-entrant structures that trap air enabling contact liquid to be in a Cassie-Baxter state. Superamphiphobicity of the samples were confirmed by …


Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee Jun 2014

Lightweight Uav Launcher, Ben Miller, Christian Valoria, Corinne Warnock, Jake Coutlee

Mechanical Engineering

This report discusses the design, construction, and testing of a lightweight, portable UAV launcher. There is a current need for a small team of soldiers to launch a US Marine Tier II UAV in a remote location without transport. Research was conducted into existing UAV launcher designs and the pros and cons of each were recorded. This research served as a basis for concept generation during the initial design development stage. It was required that the design weigh less than 110 lbs, occupy a smaller volume than 48" x 24" 18" in its collapsed state, be portable by a single …


Rubidium-Based Atomic Clock, Kate Miles Jun 2014

Rubidium-Based Atomic Clock, Kate Miles

Physics

In this paper we will explore the process of building an atomic clock from a function generator, go into an in-depth introductory discussion of the Datum LPRO, and examine how rubidium function generators work.


Laser Doppler Velocimetry: Flow Measurement Using A Digital Micromirror Device, Dawei Kuo Jun 2014

Laser Doppler Velocimetry: Flow Measurement Using A Digital Micromirror Device, Dawei Kuo

Physics

In this experiment we utilize a Texas Instruments Digital Micromirror Device to impart a phase shift to the beams of a laser Doppler velocimeter. The advantages of this approach include low cost, low power consumption, a precisely known phase-stepping frequency, and the capability of working with a broad range of optical wavelengths. The velocities measured with the set up shown here are of order 1 cm/s.


Design And Implementation Of Anti-Ballistic Missile System Using Video Motion Detection And A Nerf Gun, Steven Bowman Jun 2014

Design And Implementation Of Anti-Ballistic Missile System Using Video Motion Detection And A Nerf Gun, Steven Bowman

Physics

The goal of this senior project was to use a video camera and a dart gun to create an antiballistic missile dart launcher. I created a motion detecting and trajectory calculating program with a webcam and linked it to a Nerf dart gun to fire Nerf darts at airborne projectiles. Despite the creation of successful trajectory calculating and dart launching systems, my best efforts have resulted in an inconsistent anti-ballistic system where a very small number of projectiles are actually hit.


Ultrasonic Bonding For The Cuore Collaboration, John J. Sekerak Ii Jun 2014

Ultrasonic Bonding For The Cuore Collaboration, John J. Sekerak Ii

Physics

This paper will give the reader a brief introduction to the Standard Model, Neutrinoless Double Beta Decay, and the CUORE experiment under construction at Gran Sasso National Lab in Assergi, Italy. The remainder of the paper will describe the bonding process used to connect the heater pads and NTDs to the copper housings of the tower structure. Extensive details of the troubleshooting and calibration period are presented as a way for the reader to better understand the concepts involved during the bonding stage of the assembly process.


A Boxer's Punch, Jacob A. Ekegren Apr 2014

A Boxer's Punch, Jacob A. Ekegren

Physics

For over a year now, I have been interested in the sport of boxing. This fascination led me to explore what occurs to a human head upon impact from a boxer’s punch. It is known that a knockout occurs when blood circulation to the brain is compressed. This compression results from the sudden acceleration and deceleration of the head. Therefore, the primary focus of this experiment explores the relative effort necessary to cause significant movement to a head about a neck.


Evolution Of Perturbations In Flow Field Mechanics, Samantha R. Bell, David Forliti, Nils Sedano, Kriss Vanderhyde Jan 2014

Evolution Of Perturbations In Flow Field Mechanics, Samantha R. Bell, David Forliti, Nils Sedano, Kriss Vanderhyde

STAR Program Research Presentations

This project explores the stability analysis of a given flow field. Specifically, where the peak disturbance occurs in a flow as this is the disturbance that is most likely to occur. In rocket combustion, it is important to understand where the maximum disturbance occurs so that the mixing of fuel can be stabilized. The instabilities are the results of frequencies in the area surrounding the flow field. The linear stability governing equations are employed to better understand the disturbance. The governing equations for continuity and momentum in the x and y directions are used to form an equation for the …