Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

2011

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 55

Full-Text Articles in Physics

Fast Super-Resolution With Affine Motion Using An Adaptive Wiener Filter And Its Application To Airborne Imaging, Russell C. Hardie, Kenneth J. Barnard, Raúl Ordóñez Dec 2011

Fast Super-Resolution With Affine Motion Using An Adaptive Wiener Filter And Its Application To Airborne Imaging, Russell C. Hardie, Kenneth J. Barnard, Raúl Ordóñez

Electrical and Computer Engineering Faculty Publications

Fast nonuniform interpolation based super-resolution (SR) has traditionally been limited to applications with translational interframe motion. This is in part because such methods are based on an underlying assumption that the warping and blurring components in the observation model commute. For translational motion this is the case, but it is not true in general. This presents a problem for applications such as airborne imaging where translation may be insufficient. Here we present a new Fourier domain analysis to show that, for many image systems, an affine warping model with limited zoom and shear approximately commutes with the point spread function …


Circular And Near-Circular Polarization States Of Evanescent Monochromatic Light Fields In Total Internal Reflection, R. M. A Azzam Nov 2011

Circular And Near-Circular Polarization States Of Evanescent Monochromatic Light Fields In Total Internal Reflection, R. M. A Azzam

Electrical Engineering Faculty Publications

Conditions for the production of near-circular polarization states of the evanescent field present in the rarer medium in total internal reflection of incident monochromatic p-polarized light at a dielectric-dielectric planar interface are determined. Such conditions are satisfied if high-index (>3.2) transparent prism materials (e.g., GaP and Ge) are used at angles of incidence well above the critical angle but sufficiently below grazing incidence. Furthermore, elliptical polarization of incident light with nonzero p and s components can be tailored to cause circular polarization of the resultant tangential electric field in the plane of the interface or circular polarization of the …


Thermodynamic Limit To Photonic-Plasmonic Light-Trapping In Thin Films On Metals, Eric A. Schiff Nov 2011

Thermodynamic Limit To Photonic-Plasmonic Light-Trapping In Thin Films On Metals, Eric A. Schiff

Physics - All Scholarship

We calculate the maximum optical absorptance enhancements in thin semiconductor films on metals due to structures that diffuse light and couple it to surface plasmon polaritons. The calculations can be used to estimate plasmonic effects on light-trapping in solar cells. The calculations are based on the statistical distribution of energy in the electromagnetic modes of the structure, which include surface plasmon polariton modes at the metal interface as well as the trapped waveguide modes in the film. The enhancement has the form 4n2+/h (n – film refractive index, λ – optical wavelength, h …


Poincaré Sphere Representation Of The Fixed-Polarizer Rotating-Retarder Optical System, R. M.A. Azzam Nov 2011

Poincaré Sphere Representation Of The Fixed-Polarizer Rotating-Retarder Optical System, R. M.A. Azzam

Electrical Engineering Faculty Publications

The trajectory of the polarization state of a monochromatic light beam after it passes through a fixed linear polarizer and a rotating linear retarder of arbitrary retardance Δ is determined on the Poincaré sphere. The three-dimensional figure-8 contour is shown to be the line of intersection of a right-circular cylinder with the sphere. The cylinder is parallel to the polar (s3) axis, touches the sphere at the equator (at the point that represents the linear polarization transmitted by the fixed polarizer), and has a radius r=sin2(Δ/2). Projections of the trajectory in the coordinate planes of the …


Wavelength Dependence Of Transverse Mode Coupling With/Without E-Block Of Gan Laser Cavity, Krishneel Lal Nov 2011

Wavelength Dependence Of Transverse Mode Coupling With/Without E-Block Of Gan Laser Cavity, Krishneel Lal

Electrical Engineering

No abstract provided.


Risk-Based Critical Infrastructure Priorities For Emp And Solar Storms, George H. Baker Iii Oct 2011

Risk-Based Critical Infrastructure Priorities For Emp And Solar Storms, George H. Baker Iii

George H Baker

Two electromagnetic phenomena have the potential to create continental-scale disasters. The first, nuclear electromagnetic pulse (EMP), results from a nuclear detonation high above the tropopause. The second, a major solar storm, or "solar tsunami" occurs naturally when an intense wave of charged particles from the sun perturbs the earth's magnetic field. Both phenomena can debilitate electrical and electronic systems necessary for the operation of infrastructure systems and services. One reason why a U.S. protection program has yet to be initiated is that policy makers continue to wrestle with the question of where to begin, given the Department of Homeland Security’s …


Three-Dimensional Polarization States Of Monochromatic Light Fields, R. M.A. Azzam Oct 2011

Three-Dimensional Polarization States Of Monochromatic Light Fields, R. M.A. Azzam

Electrical Engineering Faculty Publications

The 3×1 generalized Jones vectors (GJVs) [ExEyEz]t (t indicates the transpose) that describe the linear, circular, and elliptical polarization states of an arbitrary three-dimensional (3-D) monochromatic light field are determined in terms of the geometrical parameters of the 3-D vibration of the time-harmonic electric field. In three dimensions, there are as many distinct linear polarization states as there are points on the surface of a hemisphere, and the number of distinct 3-D circular polarization states equals that of all two-dimensional (2-D) polarization states on the Poincaré sphere, of which only two are circular states. The subset of 3-D polarization …


Risk-Based Critical Infrastructure Protection Priorities For Emp And Solar Storms, George H. Baker Iii Sep 2011

Risk-Based Critical Infrastructure Protection Priorities For Emp And Solar Storms, George H. Baker Iii

George H Baker

The Commission to Assess the Threat to the United States from Electromagnetic Pulse Attack has provided a compelling case for protecting civilian infrastructure against the effects of EMP. As with protecting infrastructure against any hazard, it will be important to take a risk-based priority approach for EMP, recognizing that it is fiscally impracticable to protect everything. In this regard, EMP is particularly challenging in that it interferes with electrical and electronic data, control, transmission, and communication systems organic to nearly all infrastructures in a simultaneous and wide-scale manner. And, for nuclear burst altitudes of 100s of kilometers, the exposed geography …


Integrated Approach To Free Space Optical Communications In Strong Turbulence, Jason A. Tellez Sep 2011

Integrated Approach To Free Space Optical Communications In Strong Turbulence, Jason A. Tellez

Theses and Dissertations

The propagation of a free space optical communication signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades which negatively impact the communications link performance. This research develops an analytical probability density function (PDF) to model the best case scenario of using multiple independent beams to reduce the intensity fluctuations. The PDF was further developed to account for partially correlated beams, such as would be experienced by beams having finite separation. The PDF was validated with results obtained from digital simulations as well as lab experiments. The research showed that as the number of transmitted beams increases the …


Chaotic Bandgaps In Hybrid Acousto-Optic Feedback And Their Implications, Monish Ranjan Chatterjee, Mohammed A. Al-Saedi Aug 2011

Chaotic Bandgaps In Hybrid Acousto-Optic Feedback And Their Implications, Monish Ranjan Chatterjee, Mohammed A. Al-Saedi

Electrical and Computer Engineering Faculty Publications

The nonlinear dynamics of a hybrid acousto-optic device was examined from the perspective of the Lyapunov exponent (LE) and bifurcation maps. The plots for LE versus system parameters and bifurcation maps have recently been examined against known simulation results including chaotic encryption experiments [1]. It is verified that the "loop gain" (feedback gain (β) times incident light amplitude (Iin) needs to be greater than one as a necessary , but not sufficient condition for the onset of chaos.

It is found that for certain combinations of β, Iin, net bias voltage (αtοt), and the initial value of the first-order scattered …


Emp: A Brief Tutorial, George H. Baker Iii Jul 2011

Emp: A Brief Tutorial, George H. Baker Iii

George H Baker

A nuclear detonation at altitudes from about 30 to 500 kilometers generates a strong electromagnetic pulse (EMP) that propagates to points on the ground within the line-of-sight of the burst. For bursts above 100 kilometers, electronics can be affected over continental scale areas. The EMP induces large voltages and currents in antennas and cables of electronic systems that will upset operation or damage circuit components if protection measures are not present. The article provides a brief tutorial on EMP environments, effects and protection.


High Power Electromagnetic Weapons: A Brief Tutorial, George H. Baker Iii Jul 2011

High Power Electromagnetic Weapons: A Brief Tutorial, George H. Baker Iii

George H Baker

High power electromagnetic weapons, also referred to as high power radiofrequency (HPRF) weapons, are a type of directed energy weapons. The system effects of high power electromagnetic environments are well recognized by world scientific and military communities. Former CIA Director John Deutch has said that, "the electron is the ultimate precision-guided weapon." In the course of the investigation ofnuclear EMP effects on electronics during the Cold War period, it became evident that garden variety, unprotected electronics would malfunction, in some cases burn out, in the presence of electromagnetic fields in the hundreds to thousands of volts per meter. The EMP …


Vuv Absorption Cross Section Of Benzene, Relevance For Titan’S Atmosphere, F-J. Capalbo, Y. Bénilan, N. Fray, M. Schwell, Et. Es-Sebbar, N. Champion, T. Koskinen, R. Yelle Jul 2011

Vuv Absorption Cross Section Of Benzene, Relevance For Titan’S Atmosphere, F-J. Capalbo, Y. Bénilan, N. Fray, M. Schwell, Et. Es-Sebbar, N. Champion, T. Koskinen, R. Yelle

Dr. Et-touhami Es-sebbar

Saturn's largest satellite, Titan, is the only one in the Solar System known to have a thick N2/CH4, planet like atmosphere. The dissociation of these principal components and the recombination of the products make this atmosphere to be rich in organic compounds of high interest for astrobiology. Solar and stellar occultations observed by the Ultraviolet Imaging Spectrograph (UVIS) on board the Cassini spacecraft can be used to characterize the composition of Titan’s upper atmosphere (400 – 1400 km). The results depend strongly on the knowledge of the molecular absorption cross sections of the atmospheric constituents (Ferradaz et al. 2009). This …


Comparison Of A High Purity Germanium Gamma Ray Spectrometer And A Multidimensional Nai(T1) Scintillation Gamma Ray Spectrometer, Greg Stratton Jul 2011

Comparison Of A High Purity Germanium Gamma Ray Spectrometer And A Multidimensional Nai(T1) Scintillation Gamma Ray Spectrometer, Greg Stratton

Aerospace Engineering

This report compares two different gamma ray spectrometers in terms of performance, operation, and apparatus and also investigates the design and integration challenges of using gamma ray spectrometers in space. The first spectrometer is a one-dimensional high purity germanium (HPGe) spectrometer and the second is a multidimensional NaI(Tl) scintillation spectrometer (MGRS). The key results show that the HPGe exhibits 15 to 27 times better energy resolution than the MGRS, but the MGRS is 52 times more sensitive and removes 177 % more of the background radiation.


Super-Resolution For Imagery From Integrated Microgrid Polarimeters, Russell C. Hardie, Daniel A. Lemaster, Bradley Michael Ratliff Jul 2011

Super-Resolution For Imagery From Integrated Microgrid Polarimeters, Russell C. Hardie, Daniel A. Lemaster, Bradley Michael Ratliff

Electrical and Computer Engineering Faculty Publications

Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without …


Simplified Design Of Thin-Film Polarizing Beam Splitter Using Embedded Symmetric Trilayer Stack, R. M.A. Azzam Jul 2011

Simplified Design Of Thin-Film Polarizing Beam Splitter Using Embedded Symmetric Trilayer Stack, R. M.A. Azzam

Electrical Engineering Faculty Publications

An analytically tractable design procedure is presented for a polarizing beam splitter (PBS) that uses frustrated total internal reflection and optical tunneling by a symmetric LHL trilayer thin-film stack embedded in a high-index prism. Considerable simplification arises when the refractive index of the high-index center layer H matches the refractive index of the prism and its thickness is quarter-wave. This leads to a cube design in which zero reflection for the p polarization is achieved at a 45 degrees angle of incidence independent of the thicknesses of the identical symmetric low-index tunnel layers L and L. Arbitrarily high reflectance for …


Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi, A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra Kerns, David Kerns, Jr. Jun 2011

Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi, A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra Kerns, David Kerns, Jr.

David V. Kerns

We present a generalized study of light emission from reverse biased p–n junctions under avalanche breakdown conditions. A model is developed based on direct and indirect interband processes including self-absorption to describe measured electroluminescence spectra. This model was used to analyze experimental data for silicon (Si) and gallium arsenide p–n junctions and can be extended to several types of semiconductors regardless of their band gaps. This model can be used as a noninvasive technique for the determination of the junction depth. It has also been used to explain the observed changes of the Si p–n junction electroluminescence spectra after fast …


Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi (Adjunct), A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra E. Kerns, David V. Kerns, Jr. Jun 2011

Analysis Of Electroluminescence Spectra Of Silicon And Gallium Arsenide P-N Junctions In Avalanche Breakdown, M Lahbabi (Adjunct), A Ahaitoufa, M. Fliyou, E. Abarkan, J.-P. Charles, A. Bath, A. Hoffmann, Sherra E. Kerns, David V. Kerns, Jr.

Sherra E. Kerns

We present a generalized study of light emission from reverse biased p–n junctions under avalanche breakdown conditions. A model is developed based on direct and indirect interband processes including self-absorption to describe measured electroluminescence spectra. This model was used to analyze experimental data for silicon (Si) and gallium arsenide p–n junctions and can be extended to several types of semiconductors regardless of their band gaps. This model can be used as a noninvasive technique for the determination of the junction depth. It has also been used to explain the observed changes of the Si p–n junction electroluminescence spectra after fast …


Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel Jun 2011

Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel

Master's Theses

Spacecraft pointing accuracy and structural longevity requirements often necessitate auxiliary vibration dissipation mechanisms. However, temperature sensitivity and material degradation limit the effectiveness of traditional damping techniques in space. Robust particle damping technology offers a potential solution, driving the need for microgravity characterization. A 1U cubesat satellite presents a low cost, low risk platform for the acquisition of data needed for this evaluation, but severely restricts available mass, volume, power and bandwidth resources. This paper details the development of an instrument subject to these constraints that is capable of capturing high resolution frequency response measurements of highly nonlinear particle damper dynamics.


Principal Angles And Principal Azimuths Of Frustrated Total Internal Reflection And Optical Tunneling By An Embedded Low-Index Thin Film, R. M.A. Azzam, F. F. Sudradjat May 2011

Principal Angles And Principal Azimuths Of Frustrated Total Internal Reflection And Optical Tunneling By An Embedded Low-Index Thin Film, R. M.A. Azzam, F. F. Sudradjat

Electrical Engineering Faculty Publications

The condition for obtaining a differential (or ellipsometric) quarter-wave retardation when p- and s-polarized light of wavelength λ experience frustrated total internal reflection (FTIR) and optical tunneling at angles of incidence ϕ≥ the critical angle by a transparent thin film (medium 1) of low refractive index n1 and uniform thickness d, which is embedded in a transparent bulk medium 0 of high refractive index n0 takes the simple form: −tanh2x=tanδptanδs , in whichx=2πn1(d/λ)(N2sin2ϕ−1)1/2 , N=n0/n1 , and δp , δs are 01 interface Fresnel reflection phase shifts for the pand s polarizations. From this condition, the …


Examination Of Chaotic Signal Encryption And Recovery For Secure Communication Using Hybrid Acousto-Optic Feedback, Monish Ranjan Chatterjee, Mohammed A. Al-Saedi May 2011

Examination Of Chaotic Signal Encryption And Recovery For Secure Communication Using Hybrid Acousto-Optic Feedback, Monish Ranjan Chatterjee, Mohammed A. Al-Saedi

Electrical and Computer Engineering Faculty Publications

Generation of chaos from acousto-optic (A-O)Bragg cell modulators with an electronic feedback has been studied for over 3 decades. Since an acousto-optic Bragg cell with zeroth- and first-order feedback exhibits chaotic behavior past the threshold for bistability, such a system was recently examined for possible chaotic encryption of simple messages (such as a low-amplitude sinusoidal signal) applied via the bias input of the sound cell driver. Subsequent recovery of the message signal was carried out via a heterodyne-type strategy employing a locally generated chaotic carrier, with threshold parameters matched to the transmitting Bragg cell.

In this paper, we present numerical …


Entangling The Lattice Clock With Rydberg Gates, Frank J. Greenhalgh Apr 2011

Entangling The Lattice Clock With Rydberg Gates, Frank J. Greenhalgh

Festival of Communities: UG Symposium (Posters)

Knowledge of the exact time is critical to many engineers and planetary experts; unfortunately atomic clocks can't have infinite accuracy by Heisenberg's uncertainty principle. To attain accuracy past the limit we have achieved today, we will design a critical improvement of the atomic clock via the Rydberg gates method. Rydberg gates synchronize the atomic states so that they are more sensitive which will greatly increase the accuracy. This project will introduce fast acting Rydberg gates to an existing atomic clock layout. The Rydberg gates will allow the clock to entangle atoms in less time, thus decreasing decoherence effects on the …


Oxygen Vacancies Adjacent To Cu(2+) Ions In Tio(2) (Rutile) Crystals, A. T. Brant, Shan Yang (杨山), Nancy C. Giles, Zafar Iqbal, A. Manivannan, Larry E. Halliburton Apr 2011

Oxygen Vacancies Adjacent To Cu(2+) Ions In Tio(2) (Rutile) Crystals, A. T. Brant, Shan Yang (杨山), Nancy C. Giles, Zafar Iqbal, A. Manivannan, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to characterize Cu2+ ions substituting for Ti4+ ions in nominally undoped TiO2 crystals having the rutile structure. Illumination at 25 K with 442 nm laser light reduces the concentration of Cu2+ ions by more than a factor of 2. The laser light also reduces the EPR signals from Fe3+ and Cr3+ ions and introduces signals from Ti3+ ions. Warming in the dark to room temperature restores the crystal to its preilluminated state. Monitoring the recovery of the photoinduced changes in the Cu …


Characterization Of Continuous Vacuum Ultraviolet Lamps-Implication On The Study Of Methane Photolysis At Lyman Alpha (121.6 Nm), M-C. Gazeau, Y. Benilan, Et. Es-Sebbar, A. Jolly, E. Arzoumanian, N. Fray, H. Cottin Apr 2011

Characterization Of Continuous Vacuum Ultraviolet Lamps-Implication On The Study Of Methane Photolysis At Lyman Alpha (121.6 Nm), M-C. Gazeau, Y. Benilan, Et. Es-Sebbar, A. Jolly, E. Arzoumanian, N. Fray, H. Cottin

Dr. Et-touhami Es-sebbar

Low-temperature hydrogen plasmas are widely used as continuous vacuum ultraviolet irradiation sources in photochemical studies and, in particular, in laboratory simulations of planetary atmospheres. One of the most challenging objectives of such experiments is to retrieve accurate quantitative laboratory data allowing a reliable comparison with theoretical and/or observational ones. This task can only be achieved when the irradiation source delivers a well characterised radiation in terms of flux and wavelength dependency. As an example, we will present a study, developed in the frame of a program dedicated to simulations of Titan’s atmosphere, on methane photolysis at Lyman alpha (121.6 nm). …


Formation Of Hcn And Nh3 As Primary Compounds Of Titan’S Atmosphere Simulations Using N2-Ch4 Afterglow Plasma’’, M-C. Gazeau, Y. Bénilan, E. Arzoumanian, Et. Es-Sebbar, A. Jolly, C.D. Pintassilgo Apr 2011

Formation Of Hcn And Nh3 As Primary Compounds Of Titan’S Atmosphere Simulations Using N2-Ch4 Afterglow Plasma’’, M-C. Gazeau, Y. Bénilan, E. Arzoumanian, Et. Es-Sebbar, A. Jolly, C.D. Pintassilgo

Dr. Et-touhami Es-sebbar

No abstract provided.


Scalar Em Beam Propagation In Inhomogeneous Media, John M. Jarem, Partha P. Banerjee Apr 2011

Scalar Em Beam Propagation In Inhomogeneous Media, John M. Jarem, Partha P. Banerjee

Electrical and Computer Engineering Faculty Publications

In the previous chapter, we reviewed some of the mathematical preliminaries that will be useful later on in the text. In this chapter, we discuss some of the basic concepts of scalar wave propagation, and discuss an important numerical method, called the beam propagation method (BPM), to study propagation in linear media and in media with induced nonlinearities. Furthermore, we also discuss propagation through induced gratings, both transmission and reflection type, in order to assess energy coupling between participating waves. Finally, we introduce readers to an important characterization method, called the z-scan method, which is often used to determine the …


Binary And Core-Shell Nanoparticle Dispersed Liquid Crystal Cells For Metamaterial Applications, George Nehmetallah, Rola Aylo, Partha P. Banerjee Apr 2011

Binary And Core-Shell Nanoparticle Dispersed Liquid Crystal Cells For Metamaterial Applications, George Nehmetallah, Rola Aylo, Partha P. Banerjee

Electrical and Computer Engineering Faculty Publications

We theoretically explored the feasibility of a tunable metamaterial using binary as well as core-shell nanoparticle dispersed liquid crystal cells in the infrared and optical regimes. Owing to the spatial variation of the permittivity of the liquid crystal host upon the application of a bias voltage, the host was decomposed into a layered medium and the effective refractive index recalculated for each layer due to the distribution of polaritonic and plasmonic nanoparticles.

The scattering, extinction, and absorption of such a nanoparticle dispersed liquid crystal cell were also found. Depending on the applied voltage bias across the liquid crystal host, the …


Synthesis Of Ald Zinc Oxide And Thin Film Materials Optimization For Uv Photodetector Applications, Kandabara Nouhoum Tapily Apr 2011

Synthesis Of Ald Zinc Oxide And Thin Film Materials Optimization For Uv Photodetector Applications, Kandabara Nouhoum Tapily

Electrical & Computer Engineering Theses & Dissertations

Zinc oxide (ZnO) is a direct, wide bandgap semiconductor material. It is thermodynamically stable in the wurtzite structure at ambient temperature conditions. ZnO has very interesting optical and electrical properties and is a suitable candidate for numerous optoelectronic applications such as solar cells, LEDs and UV-photodetectors. ZnO is a naturally n-type semiconductor. Due to the lack of reproducible p-type ZnO, achieving good homojunction ZnO-based photodiodes such as UV-photodetectors remains a challenge. Meanwhile, heterojunction structures of ZnO with p-type substrates such as SiC, GaN, NiO, AlGaN, Si etc. are used; however, those heterojunction diodes suffer from low efficiencies. ZnO is an …


Compensation Techniques In Accelerator Physics, Hisham Kamal Sayed Apr 2011

Compensation Techniques In Accelerator Physics, Hisham Kamal Sayed

Physics Theses & Dissertations

Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two …


Characterizations Of Atmospheric Pressure Low Temperature Plasma Jets And Their Applications, Erdinc Karakas Apr 2011

Characterizations Of Atmospheric Pressure Low Temperature Plasma Jets And Their Applications, Erdinc Karakas

Electrical & Computer Engineering Theses & Dissertations

Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a …