Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Thermal Lattice Boltzmann Simulation For Multispecies Fluid Equilibration, Linda L. Vahala, Darren Wah, George Vahala, Jonathan Carter, Pavol Pavlo Jul 2000

Thermal Lattice Boltzmann Simulation For Multispecies Fluid Equilibration, Linda L. Vahala, Darren Wah, George Vahala, Jonathan Carter, Pavol Pavlo

Electrical & Computer Engineering Faculty Publications

The equilibration rate for multispecies fluids is examined using thermal lattice Boltzmann simulations. Two-dimensional free-decay simulations are performed for effects of velocity shear layer turbulence on sharp temperature profiles. In particular, parameters are so chosen that the lighter species is turbulent while the heavier species is laminar-and so its vorticity layers would simply decay and diffuse in time. With species coupling, however, there is velocity equilibration followed by the final relaxation to one large co- and one large counter-rotating vortex. The temperature equilibration proceeds on a slower time scale and is in good agreement with the theoretical order of magnitude …


Resolution Of Overlapping Spectra By Wavelength Modulation Spectroscopy, Audra Michiele Bullock Jul 2000

Resolution Of Overlapping Spectra By Wavelength Modulation Spectroscopy, Audra Michiele Bullock

Electrical & Computer Engineering Theses & Dissertations

Wavelength modulation absorption spectroscopy is a highly sensitive, non-intrusive technique for probing gaseous species, which employs the well-known principles of modulation spectroscopy in a novel way. With this technique, parameters such as velocity, density, and temperature can be measured with a high degree of precision. The research presented here shows that wavelength modulation is a convenient means of increasing the sensitivity of an absorption spectroscopy measurement because it allows for harmonic detection. The focus of the dissertation is resolution of overlapping spectra by harmonic detection and the advantages gained by performing detection at the higher harmonics, e.g., sixth and eighth. …


Rotation-Invariant Synthetic Discriminant Function Filter For Pattern Recognition, Vahid R. Riasati, Partha P. Banerjee, Mustafa A. G. Abushagur, Kenneth B. Howell May 2000

Rotation-Invariant Synthetic Discriminant Function Filter For Pattern Recognition, Vahid R. Riasati, Partha P. Banerjee, Mustafa A. G. Abushagur, Kenneth B. Howell

Electrical and Computer Engineering Faculty Publications

The ring synthetic discriminant function (RSDF) filter for rotation-invariant response is discussed for pattern recognition. This method uses one half of a slice of the Fourier transform of the object to generate the transfer function of the filter. This is accomplished by rotating the one half of a slice in the Fourier domain through 2π rad about the zero-frequency point of the Fourier plane. This filter has the advantage of always matching at least one half of a slice of the Fourier transform of any rotation of the image. An analytical discussion of the filter construction and correlation results are …


Characterization Of Poly-Si Thin Films Deposited By Magnetron Sputtering Onto Ni Prelayers, Elena A. Guliants, Wayne A. Anderson Jan 2000

Characterization Of Poly-Si Thin Films Deposited By Magnetron Sputtering Onto Ni Prelayers, Elena A. Guliants, Wayne A. Anderson

Electrical and Computer Engineering Faculty Publications

A method of producing a polycrystalline silicon thin film on a foreign substrate without subsequent annealing has been developed. Thermally evaporated 5–100 nm thick Nifilms served as prelayers for magnetron sputtered Si thin films. A continuous film was obtained as a result of metal induced growth of polysilicon during low temperature (below 600 °C) deposition. The film uniformity is promising for large area device applications. The influence of the Ni prelayer thickness on the grain size of thus obtained films was investigated. Atomic force microscopy and cross-sectional scanning electron microscopy studies revealed features in the 150–600 nm size range while …


Nonlinear Self-Organization In Photorefractive Materials, Partha P. Banerjee, Nickolai Kukhtarev, John O. Dimmock Jan 2000

Nonlinear Self-Organization In Photorefractive Materials, Partha P. Banerjee, Nickolai Kukhtarev, John O. Dimmock

Electrical and Computer Engineering Faculty Publications

This chapter discusses self-organization and its effects in optics. One of the most exciting and potentially useful areas of current research in optics involves the understanding and exploitation of self-organization in nonlinear optical systems. This self-organization may sometimes lead to the evolution of complex spatial patterns that can be regarded as the nonlinear eigenmodes of the system. Generation of these patterns is characteristically marked by the presence of intensity thresholds. In a nonlinear system with complicated temporal dynamics, it turns out that one cannot retain purity in spatial dimensionality. It is therefore equally important to investigate the dynamics of the …


New Free-Space Multistage Optical Interconnection Network And Its Matrix Theory, Fengguang Luo, Mingcui Cao, Anjun Wan, Jun Xu, Xinjun Zhou, Cong Deng Jan 2000

New Free-Space Multistage Optical Interconnection Network And Its Matrix Theory, Fengguang Luo, Mingcui Cao, Anjun Wan, Jun Xu, Xinjun Zhou, Cong Deng

Electro-Optics and Photonics Faculty Publications

A new free-space multistage optical interconnection network which is called the Comega interconnection network is presented. It has the same topological construction for the cascade stages of the Comega interconnection. The concept of the left Comega and the right Comega interconnection networks are given to describe the whole Comega interconnection network. The matrix theory for the Comega interconnection network is presented. The route controlling of the Comega interconnection network is decided based on the matrix analysis. The node switching states in cascade stages of the 8 by 8 Comega interconnection network for the route selection are given. The data communications …


Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach Jan 2000

Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Stable, direct current microhollow cathode discharges in mixtures of hydrochloric acid, hydrogen, xenon, and neon have been generated in a pressure range of 200–1150 Torr. The cathode hole diameter was 250 μm. Sustaining voltages range from 180 to 250 V at current levels of up to 5 mA. The discharges are strong sources of xenon chloride excimer emission at a wavelength of 308 nm. Internal efficiencies of approximately 3% have been reached at a pressure of 1050 Torr. The spectral radiant power at this pressure was measured as 5 mW/nm at 308 nm for a 3 mA discharge. By using …


Low Damage Processing And Process Characterization, Xianmin Tang Jan 2000

Low Damage Processing And Process Characterization, Xianmin Tang

Dissertations, Theses, and Masters Projects

Two novel plasma sources (one neutral source and one pulsed inductively coupled plasma source) and ashing process characterization were investigated. The primary goal was to characterize these source properties and develop corresponding applications. The study includes process damage assessment with these two sources and another continuous wave (13.56MHz) plasma source. A global average simulation of the pulsed discharges was also included.;The transient plasma density and electron temperature from the double probe analysis were compared with single Langmuir probe results with sheath displacement corrections in pulsed discharges (200Hz--10kHz). The equivalent resistance method can be used effectively to analyze these double probe …