Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physics

Determining Planck's Constant Using Leds, Zechariah Thurman Jan 2013

Determining Planck's Constant Using Leds, Zechariah Thurman

Zechariah Thurman

In this paper a value for Planck's constant is measured. The value found with this experiment is within two sigma of the accepted value, this constitutes reasonable agreement with theory for the purposes of this experiment.


Microfabricated Nanotopological Surfaces For Study Of Adhesion-Dependent Cell Mechanosensitivity, Weiqiang Chen, Yubing Sun, Jianping Fu Jan 2013

Microfabricated Nanotopological Surfaces For Study Of Adhesion-Dependent Cell Mechanosensitivity, Weiqiang Chen, Yubing Sun, Jianping Fu

Weiqiang Chen

Cells exhibit high sensitivity and diverse responses to the intrinsic nanotopography of the extracellular matrix through their nanoscale cellular sensing machinery. A simple microfabrication method for precise control and spatial patterning of the local nanoroughness on glass surfaces by using photolithography and reactive ion etching is reported. It is demonstrated that local nanoroughness as a biophysical cue could regulate a diverse array of NIH/3T3 fi broblast behaviors, including cell morphology, adhesion, proliferation, migration, and cytoskeleton contractility. The capability to control and further predict cellular responses to nanoroughness might suggest novel methods for developing biomaterials mimicking nanotopographic structures in vivo for …


Surface-Micromachined Microfiltration Membranes For Efficient Isolation And Functional Immunophenotyping Of Subpopulations Of Immune Cells, Weiqiang Chen, Nien-Tsu Huang, Boram Oh, Raymond H. W. Lam, Rong Fan, Timothy T. Cornell, Thomas P. Shanley, Katsuo Kurabayashi, Jianping Fu Jan 2013

Surface-Micromachined Microfiltration Membranes For Efficient Isolation And Functional Immunophenotyping Of Subpopulations Of Immune Cells, Weiqiang Chen, Nien-Tsu Huang, Boram Oh, Raymond H. W. Lam, Rong Fan, Timothy T. Cornell, Thomas P. Shanley, Katsuo Kurabayashi, Jianping Fu

Weiqiang Chen

An accurate measurement of the immune status in patients with immune system disorders is critical in evaluating the stage of diseases and tailoring drug treatments. The functional cellular immunity test is a promising method to establish the diagnosis of immune dysfunctions. The conventional functional cellular immunity test involves measurements of the capacity of peripheral blood mononuclear cells to produce pro-inflammatory cytokines when stimulated ex vivo. However, this “bulk” assay measures the overall reactivity of a population of lymphocytes and monocytes, making it difficult to pinpoint the phenotype or real identity of the reactive immune cells involved. In this research, we …


Nanoroughened Surfaces For Efficient Capture Of Circulating Tumor Cells Without Using Capture Antibodies, Weiqiang Chen, Shinuo Weng, Feng Zhang, Steven Allen, Xiang Li, Liwei Bao, Raymond H. W. Lam, Jill A. Macoska, Sofia D. Merajver, Jianping Fu Nov 2012

Nanoroughened Surfaces For Efficient Capture Of Circulating Tumor Cells Without Using Capture Antibodies, Weiqiang Chen, Shinuo Weng, Feng Zhang, Steven Allen, Xiang Li, Liwei Bao, Raymond H. W. Lam, Jill A. Macoska, Sofia D. Merajver, Jianping Fu

Weiqiang Chen

Circulating tumor cells (CTCs) detached from both primary and metastatic lesions represent a potential alternative to invasive biopsies as a source of tumor tissue for the detection, characterization and monitoring of cancers. Here we report a simple yet effective strategy for capturing CTCs without using capture antibodies. Our method uniquely utilized the differential adhesion preference of cancer cells to nanorough surfaces when compared to normal blood cells and thus did not depend on their physical size or surface protein expression, a significant advantage as compared to other existing CTC capture techniques.


Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu Apr 2012

Nanotopography Influences Adhesion, Spreading, And Self-Renewal Of Human Embryonic Stem Cells, Weiqiang Chen, Luis G. Villa-Diaz, Yubing Sun, Shinuo Weng, Jin Koo Kim, Raymond H. W. Lam, Lin Han, Rong Fan, Paul H. Krebsbach, Jianping Fu

Weiqiang Chen

Human embryonic stem cells (hESCs) have great potentials for future cell-based therapeutics. However, their mechanosensitivity to biophysical signals from the cellular microenvironment is not well characterized. Here we introduced an effective microfabrication strategy for accurate control and patterning of nanoroughness on glass surfaces. Our results demonstrated that nanotopography could provide a potent regulatory signal over different hESC behaviors, including cell morphology, adhesion, proliferation, clonal expansion, and self-renewal. Our results indicated that topological sensing of hESCs might include feedback regulation involving mechanosensory integrin-mediated cell matrix adhesion, myosin II, and E-cadherin. Our results also demonstrated that cellular responses to nanotopography were cell-type …


Insights Into The Power Law Relationships That Describe Mass Deposition Rates During Electrospinning, Jonathan J. Stanger, Nick Tucker, Simon Fullick, Mathieu Sellier, Mark P. Staiger Feb 2012

Insights Into The Power Law Relationships That Describe Mass Deposition Rates During Electrospinning, Jonathan J. Stanger, Nick Tucker, Simon Fullick, Mathieu Sellier, Mark P. Staiger

Jonathan J Stanger

This work explores how in electrospinning, mass deposition rate and electric current relate to applied voltage and electrode separation, factors give a range of applied electric fields. Mass deposition rate was measured by quantifying the rate of dry fibre deposited over time. Electric current was measured using a current feedback from the high voltage supply. The deposition of fibre was observed to occur at a constant rate for deposition times of up to 30 min. Both the mass deposition rate and electric current were found to vary with the applied voltage according to a power law. The relationship between the …


Manipulation Of Electrospun Fibres In Flight: The Principle Of Superposition Of Electric Fields As A Control Method, Nurfaizey A. Hamid, Jonathan J. Stanger, Nick Tucker, Andrew Wallace, Mark P. Staiger Jan 2012

Manipulation Of Electrospun Fibres In Flight: The Principle Of Superposition Of Electric Fields As A Control Method, Nurfaizey A. Hamid, Jonathan J. Stanger, Nick Tucker, Andrew Wallace, Mark P. Staiger

Jonathan J Stanger

This study investigates the magnitude of movement of the area of deposition of electrospun fibres in response to an applied auxiliary electric field. The auxiliary field is generated by two pairs of rod electrodes positioned adjacent and parallel to the line of flight of the spun fibre. The changes in shape of the deposition area and the degree of movement of the deposition area are quantified by optical scanning and image analysis. A linear response was observed between the magnitude of movement of the deposition area and voltage difference between the auxiliary and deposition electrodes. A squeezing effect which changed …


Ultrathin, Ultrasmooth And Low-Loss Silver Films Via Wetting And Annealing, Weiqiang Chen, Kuo-Ping Chen, Mark Daniel Thoreson, Alexander Kildishev, Vladimir M. Shalaev Jan 2010

Ultrathin, Ultrasmooth And Low-Loss Silver Films Via Wetting And Annealing, Weiqiang Chen, Kuo-Ping Chen, Mark Daniel Thoreson, Alexander Kildishev, Vladimir M. Shalaev

Weiqiang Chen

We have demonstrated that a thermal annealing treatment can reduce the optical losses in ultrathin, ultrasmooth, silver films deposited on a Ge wetting layer to values as low as the bulk material value and at the same time maintain an ultrasmooth surface. The annealing effect is sensitive to the annealing temperature and time, both of which should be carefully controlled. This annealing treatment is also effective for Ag–SiO2 multilayer composite films.


Toward Superlensing With Metal-Dielectric Composites And Multilayers, Rasmus Bundgaard Nielsen, Mark Thoreson, Weiqiang Chen, Anders Kristensen, Jørn Hvam, Vladimir M. Shalaev, Alexandra Boltasseva Jan 2010

Toward Superlensing With Metal-Dielectric Composites And Multilayers, Rasmus Bundgaard Nielsen, Mark Thoreson, Weiqiang Chen, Anders Kristensen, Jørn Hvam, Vladimir M. Shalaev, Alexandra Boltasseva

Weiqiang Chen

We report on the fabrication of two types of adjustable, near-field superlens designs: metal–dielectric composites and metal–dielectric multilayer films. We fabricated a variety of films with different materials, thicknesses and compositions. These samples were characterized physically and optically to determine their film composition, quality, and optical responses. Our results on metal–dielectric composites indicate that although the real part of the effective permittivity generally follows effective medium theory predictions, the imaginary part does not and substantially higher losses are observed. Going forward, it appears that multilayer metal–dielectric designs are more suitable for sub-diffraction imaging applications because they could provide both tunability …


Fabrication And Optical Characterizations Of Smooth Silver-Silica Nanocomposite Films, Weiqiang Chen, Mark Daniel Thoreson, Alexander V. Kildishev, Vladimir Shalaev Jan 2010

Fabrication And Optical Characterizations Of Smooth Silver-Silica Nanocomposite Films, Weiqiang Chen, Mark Daniel Thoreson, Alexander V. Kildishev, Vladimir Shalaev

Weiqiang Chen

We have studied the surface-smoothing effect of an ultrathin germanium (Ge) layer on silver (Ag)-silica (SiO2) nanocomposite films for superlensing applications. Our experimental results indicate that inserting a thin Ge layer below the silver-silica composite films can reduce the final surface root-mean-squared (RMS) roughness to under 1 nm. Additionally, the metal nanostructure plays a role in both the smoothing effect and the optical properties of the nanocomposite films. Our experimental results show that the Bruggeman effective medium theory (EMT) is not sufficiently accurate to describe some properties of our nanocomposite films. In addition to the constituent materials and their filling …


Effect Of Salts On The Electrospinning Of Poly(Vinyl Alcohol), Jonathan J. Stanger, Nick Tucker, Mark P. Staiger, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Nigel Larsen Jan 2009

Effect Of Salts On The Electrospinning Of Poly(Vinyl Alcohol), Jonathan J. Stanger, Nick Tucker, Mark P. Staiger, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Nigel Larsen

Jonathan J Stanger

Fibres with a diameter in the nanometer range were electrospun from aqueous poly(vinyl alcohol) (PVOH). In order to improve the mass deposition rate and decrease the final fibre diameter salts (NaCl, LiCl, LiBr and LiF) were added to the solution. The aim was to increase the charge density and hence increase the electrostatic forces on the fluid. It was found that with increasing salt concentration the charge density did increase. However the mass deposition rate was found to decrease and the final fibre diameter was found to increase. The decrease in mass deposition rate is explained by considering the concept …


Effect Of Charge Density On The Taylor Cone In Electrospinning, Jonathan J. Stanger, Nick Tucker, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Mark P. Staiger Jan 2009

Effect Of Charge Density On The Taylor Cone In Electrospinning, Jonathan J. Stanger, Nick Tucker, Kerry Kirwan, Stuart Coles, Daniel Jacobs, Mark P. Staiger

Jonathan J Stanger

A detailed understanding of charge density and its origins during the electrospinning process is desirable for developing new electrospinnable polymer-solvent systems and ensuring mathematical models of the process are accurate. In this work, two different approaches were taken to alter the charge density in order to measure its effect on the Taylor cone, mass deposition rate and initial jet diameter. It was found that an increase in charge density results in a decrease in the mass deposition rate and initial jet diameter. A theory is proposed for this behaviour in that an increase in charge density leads to the tip …


The Effect Of Electrode Configuration And Substrate Material On The Mass Deposition Rate Of Electrospinning, Jonathan J. Stanger, Nick Tucker, Andrew Wallace, Nigel Larsen, Mark P. Staiger, Roger Reeves Jan 2009

The Effect Of Electrode Configuration And Substrate Material On The Mass Deposition Rate Of Electrospinning, Jonathan J. Stanger, Nick Tucker, Andrew Wallace, Nigel Larsen, Mark P. Staiger, Roger Reeves

Jonathan J Stanger

Poly(vinyl alcohol) (PVOH) was electrospun using different methods to charge the polymer solution. A positive high voltage relative to the collecting electrode significantly increased the fibre deposition rate. Electron microscopy showed that approximately half of the increase in fibre mass was due to thicker fibres being deposited. The current flowing from the grounded electrode was measured to determine the charge carried on the PVOH jet. This showed that for a positive voltage charging condition there is a much larger current and hence more charge carriers generated in the PVOH solution. As a result, more mass is ejected from the Taylor …


Charge Transfer Mechanisms In Electrospinning, Jonathan J. Stanger Jan 2008

Charge Transfer Mechanisms In Electrospinning, Jonathan J. Stanger

Jonathan J Stanger

Electrospinning is a method of producing nano structured material from a polymer solution or melt using high strength electric fields. It is a process that has yet to find extensive industrial application yet shows promise if obstacles such as low rate of production overcome perhaps by more complete theoretical modelling. This work examines the effects of adding an ionic salt to a solution of poly(vinyl alcohol) in water. The direct effect was an increase the charge density and electric current. It was found that an increase in charge density decreases the mass deposition rate and forms a thinner initial jet. …


The Age Of Entanglement Jan 2001

The Age Of Entanglement

David D Nolte

Quantum mechanics is a venerable field of study. The year 2000 marked the 100th anniversary of theoriginal quantum hypothesis proposed by Max Planck in November of 1900. Few current fields in physicsor engineering are as old as quantum mechanics. It predates relativity, both special and general. It predatesnuclear and particle physics. Quantum mechanics even predates universal acceptance of the molecularhypothesis, that is, that all matter is made up of individual molecules in thermal motion. It may be hard tobelieve, but this happened only after Einstein's paper on Brownian motion was published in his miracleyear 1905.