Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey Jan 2023

Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey

Theses and Dissertations--Chemistry

The human cytochrome P450 1B1 (CYP1B1) is an emerging target for small- molecule therapeutics. Several solid tumors overexpress CYP1B1 to the degree that it has been referred to as a universal tumor antigen. Conversely, its expression is low in healthy tissues. CYP1B1 may drive tumorigenesis through promoting the formation of reactive toxins from environmental pollutants or from endogenous hormone substrates. Additionally, the expression of CYP1B1 in tumors is associated with resistance to several common chemotherapies and with poor prognoses in cancer patients. However, inhibiting CYP1B1 with small molecules has been demonstrated in cellular and murine model systems to reverse this …


Advancing The Preclinical Development Of Secondary Metabolites From Cacospongia Mycofijiensis For The Treatment Of Cancer, Joseph Morris May 2021

Advancing The Preclinical Development Of Secondary Metabolites From Cacospongia Mycofijiensis For The Treatment Of Cancer, Joseph Morris

Natural Sciences and Mathematics | Biological Sciences Master's Theses

The marine sponge Cacospongia mycofijiensis from the Indo-Pacific has proven to be a source of structurally diverse secondary metabolites that are biologically active against a variety of distinct targets. Current interest in the secondary metabolites of C. mycofijiensis largely stems from a) their potent and preferential cytotoxicity for cancer cell lines versus normal cells, making many of them promising leads as cancer therapeutics and b) the novel mechanisms of action responsible for their impressive cytotoxicity. However, limited compound availability has resulted in a paucity of studies aimed at advancing the preclinical development of these secondary metabolites from C. mycofijiensis for …


Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie Aug 2020

Investigating Chitosan Modified With Triethylammonium Butanamide And Triethylphosphonium Butanamide As Non-Viral Gene Delivery Vectors By Examining Cytotoxicity And Transfection Efficiency, Deborah C. Ehie

MSU Graduate Theses

Gene therapy is a very challenging field, especially with new emerging genetic disorders. Chitosan (CS), due to chitosan’s flexibility, biocompatibility, and biodegradability, has been of interest in the world of gene therapy especially as researchers are gravitating towards non-viral vectors due to the problems caused by viral vectors. Nevertheless, there are still issues regarding solubility, cellular uptake of cargos being transported in vitro or in vivo, increased cytotoxicity levels, as well as many other things that prevent chitosan from being an efficient gene delivery agent. Here I present five derivatives of chitosan, which were all modified with either triethylphosphonium …


Conformationally-Controlled Late-Stage Modifications For Sar Studies Of The C-3-Glcp Moiety Of Ipomoeassin F, Lucas Whisenhunt Aug 2018

Conformationally-Controlled Late-Stage Modifications For Sar Studies Of The C-3-Glcp Moiety Of Ipomoeassin F, Lucas Whisenhunt

Graduate Theses and Dissertations

The resin glycoside, ipomoeassin F has been shown to be extremely potent against multiple cancer lines (IC50 = 4.2-36 nM). However, the mechanism of action of this potent and complex natural product is still not fully understood. The α,β-unsaturated esters of the glucosyl moiety have been shown to be vital for the overall cytotoxicity of ipomoeassin F. Nevertheless, the importance of the tigloyl ester of the glucosyl moiety is still largely unknown. This work aimed to study the pharmacophore importance of the tigloyl ester by creating, an efficient, scalable, and flexible synthesis route for various analogs. The 18-linear step synthesis …


Development Of Novel Alkaloid Derivatives For The Treatment Of Chronic Myeloid Leukemia, Lindsay Michelle Renn Oct 2017

Development Of Novel Alkaloid Derivatives For The Treatment Of Chronic Myeloid Leukemia, Lindsay Michelle Renn

Theses and Dissertations

The majority of chronic myeloid leukemia (CML) patients can be treated with and respond to imatinib mesylate (Gleevec). Imatinib is known to inhibit BCR-ABLl kinase activity, and is effective for the treatment of the majority of CML patients. Multiple mutations have been found in patients resistant to imatinib treatment, including many located in the BCR-ABLl tyrosine kinase domain (e.g. E255K and T315I). Matrine is a bioactive alkaloid from Sophora flavescens and has been shown to inhibit several types of cancers and is used in Chinese medicine. The goal of this study is to develop new matrine derivatives that inhibit growth …


Branching Into Rnai: Synthesis, Characterization And Biology Of Branch And Hyperbranch Sirnas, Anthony Muriithi Maina May 2014

Branching Into Rnai: Synthesis, Characterization And Biology Of Branch And Hyperbranch Sirnas, Anthony Muriithi Maina

Seton Hall University Dissertations and Theses (ETDs)

The cancer epidemic continues to afflict millions of humans world-wide each year and despite a renewed hope with the development of new and improved forms of therapy, a cure for cancer remains an elusive goal. This is partly related to the rise of resilient forms of tumors that have evolved with resistance towards conventional chemotherapy and radiation treatments. Moreover, these non-specific therapeutic regimens are highly toxic, leading to severe immunosuppressive effects which poisons the body and compromises the road towards remission. In an effort to mitigate these limitations, cancer-targeting approaches are currently experiencing a renaissance in the translation of new …


Mechanistic Study Of The Small Molecule Inhibitor Dx-52-1, Junru Cui May 2011

Mechanistic Study Of The Small Molecule Inhibitor Dx-52-1, Junru Cui

Master's Theses

Cell migration is a basic biological process that is fundamental to several normal and disease processes such as embryonic development, tissue repair, immune function, angiogenesis and cancer cell invasion and metastasis. Small organic molecules inhibiting cell migration can be used as both research probes and therapeutic agents. DX-52-1, a semisynthetic derivative of the natural product quinocarmycin (also known as quinocarcin), inhibits the migration of Madin-Darby canine kidney epithelial cells with nanomolar concentration. We have identified galectin-3, a multifunctional protein whose best-known function is its sugar binding ability, as a secondary target of DX-52-1 with functions in cell motility. In addition, …


Quantification Of Benzo[A]Pyrene-Guanine Adducts In In Vitro And In Vivo Tissue Samples By Lc Tandem Mass Spectrometry, Po-Chang Chiang Jun 2001

Quantification Of Benzo[A]Pyrene-Guanine Adducts In In Vitro And In Vivo Tissue Samples By Lc Tandem Mass Spectrometry, Po-Chang Chiang

Dissertations

No abstract provided.