Open Access. Powered by Scholars. Published by Universities.®

Non-linear Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Plasma and Beam Physics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 43

Full-Text Articles in Non-linear Dynamics

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi Apr 2023

The Magnetic Field Of Protostar-Disk-Outflow Systems, Mahmoud Sharkawi

Electronic Thesis and Dissertation Repository

Recent observations of protostellar cores reveal complex magnetic field configurations that are distorted in the innermost disk region. Unlike the prestellar phase, where the magnetic field geometry is simpler with an hourglass configuration, magnetic fields in the protostellar phase are sculpted by the formation of outflows and rapid rotation. This gives rise to a significant azimuthal (or toroidal) component that has not yet been analytically modelled in the literature. Moreover, the onset of outflows, which act as angular momentum transport mechanisms, have received considerable attention in the past few decades. Two mechanisms: 1) the driving by the gradient of a …


Interpretations Of Bicoherence In Space & Lab Plasma Dynamics, Gregory Allen Riggs Jan 2020

Interpretations Of Bicoherence In Space & Lab Plasma Dynamics, Gregory Allen Riggs

Graduate Theses, Dissertations, and Problem Reports

The application of bicoherence analysis to plasma research, particularly in non-linear, coupled-wave regimes, has thus far been significantly belied by poor resolution in time, and/or outright destruction of frequency information. Though the typical power spectrum cloaks the phase-coherency between frequencies, Fourier transforms of higher-order convolutions provide an n-dimensional spectrum which is adept at elucidating n-wave phase coherence. As such, this investigation focuses on the utility of the normalized bispectrum for detection of wave-wave coupling in general, with emphasis on distinct implications within the scope of non-linear plasma physics. Interpretations of bicoherent features are given for time series from …


Orbital Stability Results For Soliton Solutions To Nonlinear Schrödinger Equations With External Potentials, Joseph B. Lindgren Jan 2017

Orbital Stability Results For Soliton Solutions To Nonlinear Schrödinger Equations With External Potentials, Joseph B. Lindgren

Theses and Dissertations--Mathematics

For certain nonlinear Schroedinger equations there exist solutions which are called solitary waves. Addition of a potential $V$ changes the dynamics, but for small enough $||V||_{L^\infty}$ we can still obtain stability (and approximately Newtonian motion of the solitary wave's center of mass) for soliton-like solutions up to a finite time that depends on the size and scale of the potential $V$. Our method is an adaptation of the well-known Lyapunov method.

For the sake of completeness, we also prove long-time stability of traveling solitons in the case $V=0$.


Stable, Tunable, Quasimonoenergetic Electron Beams Produced In A Laser Wakefield Near The Threshold For Self-Injection, Sudeep Banerjee, Serguei Y. Kalmykov, Nathan D. Powers, Gregory Golovin, Vidiya Ramanathan, Nathan J. Cunningham, Kevin J. Brown, Shouyuan Chen, Isaac Ghebregziabher, Bradley A. Shadwick, Donald P. Umstadter, Benjamin A. Cowan, David L. Bruhwiler, Arnaud Beck, Erik Lefebvre Mar 2013

Stable, Tunable, Quasimonoenergetic Electron Beams Produced In A Laser Wakefield Near The Threshold For Self-Injection, Sudeep Banerjee, Serguei Y. Kalmykov, Nathan D. Powers, Gregory Golovin, Vidiya Ramanathan, Nathan J. Cunningham, Kevin J. Brown, Shouyuan Chen, Isaac Ghebregziabher, Bradley A. Shadwick, Donald P. Umstadter, Benjamin A. Cowan, David L. Bruhwiler, Arnaud Beck, Erik Lefebvre

Donald P. Umstadter

Stable operation of a laser-plasma accelerator near the threshold for electron self-injection in the blowout regime has been demonstrated with 25–60 TW, 30 fs laser pulses focused into a 3–4 millimeter length gas jet. Nearly Gaussian shape and high nanosecond contrast of the focused pulse appear to be critically important for controllable, tunable generation of 250–430 MeV electron bunches with a low energy spread, ~ 10 pC charge, a few-mrad divergence and pointing stability, and a vanishingly small low-energy background. The physical nature of the near-threshold behavior is examined using three-dimensional particle-in-cell simulations. Simulations indicate that properly locating the nonlinear …


Stable, Tunable, Quasimonoenergetic Electron Beams Produced In A Laser Wakefield Near The Threshold For Self-Injection, Sudeep Banerjee, Serguei Y. Kalmykov, Nathan D. Powers, Gregory Golovin, Vidiya Ramanathan, Nathan J. Cunningham, Kevin J. Brown, Shouyuan Chen, Isaac Ghebregziabher, Bradley A. Shadwick, Donald P. Umstadter, Benjamin A. Cowan, David L. Bruhwiler, Arnaud Beck, Erik Lefebvre Mar 2013

Stable, Tunable, Quasimonoenergetic Electron Beams Produced In A Laser Wakefield Near The Threshold For Self-Injection, Sudeep Banerjee, Serguei Y. Kalmykov, Nathan D. Powers, Gregory Golovin, Vidiya Ramanathan, Nathan J. Cunningham, Kevin J. Brown, Shouyuan Chen, Isaac Ghebregziabher, Bradley A. Shadwick, Donald P. Umstadter, Benjamin A. Cowan, David L. Bruhwiler, Arnaud Beck, Erik Lefebvre

Serge Youri Kalmykov

Stable operation of a laser-plasma accelerator near the threshold for electron self-injection in the blowout regime has been demonstrated with 25–60 TW, 30 fs laser pulses focused into a 3–4 millimeter length gas jet. Nearly Gaussian shape and high nanosecond contrast of the focused pulse appear to be critically important for controllable, tunable generation of 250–430 MeV electron bunches with a low energy spread, ~ 10 pC charge, a few-mrad divergence and pointing stability, and a vanishingly small low-energy background. The physical nature of the near-threshold behavior is examined using three-dimensional particle-in-cell simulations. Simulations indicate that properly locating the nonlinear …


Dark-Current-Free Laser-Plasma Acceleration In Blowout Regime Using Nonlinear Plasma Lens, Serguei Y. Kalmykov Jan 2013

Dark-Current-Free Laser-Plasma Acceleration In Blowout Regime Using Nonlinear Plasma Lens, Serguei Y. Kalmykov

Serge Youri Kalmykov

It is demonstrated that a thin dense plasma slab (lens), placed before a multi-centimeter-length, low-density plasma (accelerator), overfocuses an incident petawatt laser pulse at a controlled location inside the accelerator, creating an expanding electron density bubble that traps plasma electrons over a brief time interval. As soon as the pulse stabilizes and self-guiding begins, the bubble stabilizes and transforms into the first (non-broken) bucket of a conventional three-dimensional nonlinear plasma wave, eliminating any chance for further injection. A well collimated, quasi-monoenergetic electron bunch with a zero low-energy background further accelerates to a multi-GeV energy.


Petawatt-Laser-Driven Wakefield Acceleration Of Electrons To 2 Gev In 10^{17} Cm^{-3} Plasma, Xiaoming Wang, Rafal B. Zgadzaj, Neil Fazel, Sunghwan A. Yi, X. Zhang, Watson Henderson, Yen-Yu Zhang, Rick Korzekwa, Hai-En Tsai, C.-H. Pai, Zhengyan Li, Hernan Quevedo, Gilliss Dyer, Erhard W. Gaul, Mikael Martinez, Aaron Bernstein, Ted Borger, M. Spinks, M. Donovan, Serguei Y. Kalmykov, Vladimir N. Khudik, Gennady Shvets, Todd Ditmire, Michael C. Downer Dec 2012

Petawatt-Laser-Driven Wakefield Acceleration Of Electrons To 2 Gev In 10^{17} Cm^{-3} Plasma, Xiaoming Wang, Rafal B. Zgadzaj, Neil Fazel, Sunghwan A. Yi, X. Zhang, Watson Henderson, Yen-Yu Zhang, Rick Korzekwa, Hai-En Tsai, C.-H. Pai, Zhengyan Li, Hernan Quevedo, Gilliss Dyer, Erhard W. Gaul, Mikael Martinez, Aaron Bernstein, Ted Borger, M. Spinks, M. Donovan, Serguei Y. Kalmykov, Vladimir N. Khudik, Gennady Shvets, Todd Ditmire, Michael C. Downer

Serge Youri Kalmykov

Electron self-injection into a laser-plasma accelerator (LPA) driven by the Texas Petawatt (TPW) laser is reported at plasma densities 1.7 - 6.2 x 10^{17} cm^{-3}. Energy and charge of the electron beam, ranging from 0.5 GeV to 2 GeV and tens to hundreds of pC, respectively, depended strongly on laser beam quality and plasma density. Angular beam divergence was consistently around 0.5 mrad (FWHM), while shot-to-shot pointing fluctuations were limited to ±1.4 mrad rms. Betatron x-rays with tens of keV photon energy are also clearly observed.


Sub-Millimeter-Scale, 100-Mev-Class Quasi-Monoenergetic Laser Plasma Accelerator Based On All-Optical Control Of Dark Current In The Blowout Regime, Serguei Y. Kalmykov, Xavier Davoine, Bradley A. Shadwick Dec 2012

Sub-Millimeter-Scale, 100-Mev-Class Quasi-Monoenergetic Laser Plasma Accelerator Based On All-Optical Control Of Dark Current In The Blowout Regime, Serguei Y. Kalmykov, Xavier Davoine, Bradley A. Shadwick

Serge Youri Kalmykov

It is demonstrated that by negatively chirping the frequency of a 20-fs, 15-TW driving laser pulse with an ultrabroad bandwidth (corresponding to a sub-2-cycle transform-limited duration it is possible to prevent early compression of the pulse into an optical shock, thus reducing expansion of the accelerating plasma bucket (electron density "bubble") and delaying dephasing of self-injected and accelerated electrons. These features help suppress unwanted continuous self-injection (dark current) in the blowout regime, making possible to use the entire dephasing length to generate low-background, quasi-monoenergetic 200-MeV-scale electron beams from sub-mm-length, dense plasmas (n_{e0} = 1.3 x 10^{19} cm^{−3}).


Computationally Efficient Methods For Modelling Laser Wakefield Acceleration In The Blowout Regime, Benjamin M. Cowan, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Kyle Bunkers, Agustin F. Lifschitz, Erik Lefebvre, David L. Bruhwiler, Bradley A. Shadwick, Donald P. Umstadter Jun 2012

Computationally Efficient Methods For Modelling Laser Wakefield Acceleration In The Blowout Regime, Benjamin M. Cowan, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Kyle Bunkers, Agustin F. Lifschitz, Erik Lefebvre, David L. Bruhwiler, Bradley A. Shadwick, Donald P. Umstadter

Donald P. Umstadter

Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100-terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, 3D particle-in-cell modelling are examined. First, the Cartesian code VORPAL (Nieter, C. and Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 538) using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while …


Computationally Efficient Methods For Modelling Laser Wakefield Acceleration In The Blowout Regime, Benjamin M. Cowan, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Kyle Bunkers, Agustin F. Lifschitz, Erik Lefebvre, David L. Bruhwiler, Bradley A. Shadwick, Donald P. Umstadter Jun 2012

Computationally Efficient Methods For Modelling Laser Wakefield Acceleration In The Blowout Regime, Benjamin M. Cowan, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Kyle Bunkers, Agustin F. Lifschitz, Erik Lefebvre, David L. Bruhwiler, Bradley A. Shadwick, Donald P. Umstadter

Serge Youri Kalmykov

Electron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100-terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, 3D particle-in-cell modelling are examined. First, the Cartesian code VORPAL (Nieter, C. and Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J. Comput. Phys. 196, 538) using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while …


Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter Apr 2012

Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter

Donald P. Umstadter

In this paper, we present results on a scalable high-energy electron source based on laser wakefield acceleration. The electron accelerator using 30 - 80 TW, 30 fs laser pulses, operates in the blowout regime, and produces high-quality, quasi-monoenergetic electron beams in the range 100 - 800 MeV. These beams have angular divergence of 1 - 4 mrad, and 5 - 25 percent energy spread, with a resulting brightness 10^{11} electrons mm^{-2} MeV^{-1} mrad^{-2}. The beam parameters can be tuned by varying the laser and plasma conditions. The use of a high-quality laser pulse and appropriate target conditions enables optimization of …


Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter Apr 2012

Generation Of Tunable, 100–800 Mev Quasi-Monoenergetic Electron Beams From A Laser-Wakefield Accelerator In The Blowout Regime, Sudeep Banerjee, Nathan D. Powers, Vidiya Ramanathan, Isaac Ghebregziabher, Kevin J. Brown, Chakra M. Maharjan, Shouyuan Chen, Arnaud Beck, Erik Lefebvre, Serguei Y. Kalmykov, Bradley A. Shadwick, Donald P. Umstadter

Serge Youri Kalmykov

In this paper, we present results on a scalable high-energy electron source based on laser wakefield acceleration. The electron accelerator using 30 - 80 TW, 30 fs laser pulses, operates in the blowout regime, and produces high-quality, quasi-monoenergetic electron beams in the range 100 - 800 MeV. These beams have angular divergence of 1 - 4 mrad, and 5 - 25 percent energy spread, with a resulting brightness 10^{11} electrons mm^{-2} MeV^{-1} mrad^{-2}. The beam parameters can be tuned by varying the laser and plasma conditions. The use of a high-quality laser pulse and appropriate target conditions enables optimization of …


Laser Plasma Acceleration With A Negatively Chirped Pulse: All-Optical Control Over Dark Current In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Erik Lefebvre, Bradley A. Shadwick Mar 2012

Laser Plasma Acceleration With A Negatively Chirped Pulse: All-Optical Control Over Dark Current In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Xavier Davoine, Erik Lefebvre, Bradley A. Shadwick

Serge Youri Kalmykov

Recent experiments with 100 terawatt-class, sub-50 femtosecond laser pulses show that electrons self-injected into a laser-driven electron density bubble can be accelerated above 0.5 gigaelectronvolt energy in a sub-centimetre length rarefied plasma. To reach this energy range, electrons must ultimately outrun the bubble and exit the accelerating phase; this, however, does not ensure high beam quality. Wake excitation increases the laser pulse bandwidth by red-shifting its head, keeping the tail unshifted. Anomalous group velocity dispersion of radiation in plasma slows down the red-shifted head, compressing the pulse into a few-cycle-long piston of relativistic intensity. Pulse transformation into a piston causes …


Nonlinear Waves And Solitons On Contours And Closed Surfaces, Andrei Ludu Dec 2011

Nonlinear Waves And Solitons On Contours And Closed Surfaces, Andrei Ludu

Andrei Ludu

No abstract provided.


Physics Of Quasi-Monoenergetic Laser-Plasma Acceleration Of Electrons In The Blowout Regime, Serguei Y. Kalmykov, Bradley A. Shadwick, Arnaud Beck, Erik Lefebvre Oct 2011

Physics Of Quasi-Monoenergetic Laser-Plasma Acceleration Of Electrons In The Blowout Regime, Serguei Y. Kalmykov, Bradley A. Shadwick, Arnaud Beck, Erik Lefebvre

Serge Youri Kalmykov

No abstract provided.


Electron Self-Injection Into An Evolving Plasma Bubble: Quasi-Monoenergetic Laser-Plasma Acceleration In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Sunghwan A. Yi, Vladimir N. Khudik, Michael C. Downer, Erik Lefebvre, Bradley A. Shadwick, Donald P. Umstadter Apr 2011

Electron Self-Injection Into An Evolving Plasma Bubble: Quasi-Monoenergetic Laser-Plasma Acceleration In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Sunghwan A. Yi, Vladimir N. Khudik, Michael C. Downer, Erik Lefebvre, Bradley A. Shadwick, Donald P. Umstadter

Donald P. Umstadter

An electron density bubble driven in a rarefied uniform plasma by a slowly evolving laser pulse goes through periods of adiabatically slow expansions and contractions. Bubble expansion causes robust self-injection of initially quiescent plasma electrons, whereas stabilization and contraction terminate self-injection thus limiting injected charge; concomitant phase space rotation reduces the bunch energy spread. In regimes relevant to experiments with hundred terawatt- to petawatt-class lasers, bubble dynamics and, hence, the self-injection process are governed primarily by the driver evolution. Collective transverse fields of the trapped electron bunch reduce the accelerating gradient and slow down phase space rotation. Bubble expansion followed …


Electron Self-Injection Into An Evolving Plasma Bubble: Quasi-Monoenergetic Laser-Plasma Acceleration In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Sunghwan A. Yi, Vladimir N. Khudik, Michael C. Downer, Erik Lefebvre, Bradley A. Shadwick, Donald P. Umstadter Apr 2011

Electron Self-Injection Into An Evolving Plasma Bubble: Quasi-Monoenergetic Laser-Plasma Acceleration In The Blowout Regime, Serguei Y. Kalmykov, Arnaud Beck, Sunghwan A. Yi, Vladimir N. Khudik, Michael C. Downer, Erik Lefebvre, Bradley A. Shadwick, Donald P. Umstadter

Serge Youri Kalmykov

An electron density bubble driven in a rarefied uniform plasma by a slowly evolving laser pulse goes through periods of adiabatically slow expansions and contractions. Bubble expansion causes robust self-injection of initially quiescent plasma electrons, whereas stabilization and contraction terminate self-injection thus limiting injected charge; concomitant phase space rotation reduces the bunch energy spread. In regimes relevant to experiments with hundred terawatt- to petawatt-class lasers, bubble dynamics and, hence, the self-injection process are governed primarily by the driver evolution. Collective transverse fields of the trapped electron bunch reduce the accelerating gradient and slow down phase space rotation. Bubble expansion followed …


Dark-Current-Free Petawatt Laser-Driven Wakefield Accelerator Based On Electron Self-Injection Into An Expanding Plasma Bubble, Serguei Y. Kalmykov, Sunghwan A. Yi, Arnaud Beck, Agustin F. Lifschitz, Xavier Davoine, Erik Lefebvre, Vladimir N. Khudik, Gennady Shvets, Michael C. Downer Dec 2010

Dark-Current-Free Petawatt Laser-Driven Wakefield Accelerator Based On Electron Self-Injection Into An Expanding Plasma Bubble, Serguei Y. Kalmykov, Sunghwan A. Yi, Arnaud Beck, Agustin F. Lifschitz, Xavier Davoine, Erik Lefebvre, Vladimir N. Khudik, Gennady Shvets, Michael C. Downer

Serge Youri Kalmykov

A dark-current-free plasma accelerator driven by a short (~ 150 fs) self-guided petawatt laser pulse is proposed. The accelerator uses two plasma layers, one of which, short and dense, acts as a thin nonlinear lens. It is followed by a long rarefied plasma (~ 10^{17} electrons cm^{−3}) in which background electrons are trapped and accelerated by a nonlinear laser wakefield. The pulse overfocused by the plasma lens diffracts in low-density plasma as in vacuum and drives in its wake a rapidly expanding electron density bubble. The expanding bubble effectively traps initially quiescent electrons. The trapped charge given by quasi-cylindrical three-dimensional …


Hamiltonian Analysis Of Electron Self-Injection And Acceleration Into An Evolving Plasma Bubble, Sunghwan A. Yi, Vladimir N. Khudik, Serguei Y. Kalmykov, Gennady Shvets Dec 2010

Hamiltonian Analysis Of Electron Self-Injection And Acceleration Into An Evolving Plasma Bubble, Sunghwan A. Yi, Vladimir N. Khudik, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

Injection and acceleration of the background plasma electrons in laser wakefield accelerators (LWFA) operated in the blowout (‘bubble’) regime are analysed. Using a model of a slowly expanding spherical plasma bubble propagating with an ultra-relativistic speed, we derive a sufficient condition for the electron injection: the change in the electron’s Hamiltonian in the co-moving with the bubble reference frame must exceed its rest mass energy m_{e}c^2. We demonstrate the existence of the minimal expansion rate of the bubble needed for electron injection. We demonstrate that if the bubble’s expansion is followed by its stabilization or contraction, then a quasi-monoenergetic electron …


All-Optical Control Of Nonlinear Self-Focusing In Plasmas Using Non-Resonantly Driven Plasma Wave, Serguei Y. Kalmykov, Bradley A. Shadwick, Michael C. Downer Nov 2010

All-Optical Control Of Nonlinear Self-Focusing In Plasmas Using Non-Resonantly Driven Plasma Wave, Serguei Y. Kalmykov, Bradley A. Shadwick, Michael C. Downer

Serge Youri Kalmykov

Excitation of plasma density perturbations by an initially bi-color laser pulse helps to control nonlinear refraction in the plasma and enables various types of laser self-guiding. In this report we consider a setup that not only makes possible the transport of laser energy over cm-long relatively dense plasmas (n_0 = 10^{18} cm^{−3}) but also transforms the pulse into the unique format inaccessible to the conventional amplification techniques (relativistically intense periodic trains of few-cycle spikes). This well focusable pulse train is a novel light source interesting for ultra-fast high-field science applications. The opposite case of suppression of nonlinear self-focusing and dynamical …


Electron Self-Injection Into An Evolving Plasma Bubble: The Way To A Dark Current Free Gev-Scale Laser Accelerator, Serguei Y. Kalmykov, Arnaud Beck, Sunghwan A. Yi, Vladimir N. Khudik, Bradley A. Shadwick, Erik Lefebvre, Michael C. Downer Nov 2010

Electron Self-Injection Into An Evolving Plasma Bubble: The Way To A Dark Current Free Gev-Scale Laser Accelerator, Serguei Y. Kalmykov, Arnaud Beck, Sunghwan A. Yi, Vladimir N. Khudik, Bradley A. Shadwick, Erik Lefebvre, Michael C. Downer

Serge Youri Kalmykov

A time-varying electron density bubble created by the radiation pressure of a tightly focused petawatt laser pulse traps electrons of ambient rarefied plasma and accelerates them to a GeV energy over a few-cm distance. Expansion of the bubble caused by the shape variation of the self-guided pulse is the primary cause of electron self-injection in strongly rarefied plasmas (n_0 ~ 10^{17} cm^{−3}). Stabilization and contraction of the bubble extinguishes the injection. After the bubble stabilization, longitudinal non-uniformity of the accelerating gradient results in a rapid phase space rotation that produces a quasi-monoenergetic bunch well before the de-phasing limit. Combination of …


Numerical Modelling Of A 10-Cm-Long Multi-Gev Laser Wakefield Accelerator Driven By A Self-Guided Petawatt Pulse, Serguei Y. Kalmykov, Sunghwan A. Yi, Arnaud Beck, Agustin F. Lifschitz, Xavier Davoine, Erik Lefebvre, Alexander Pukhov, Vladimir N. Khudik, Gennady Shvets, Steven A. Reed, Peng Dong, Xiaoming Wang, Dongsu Du, Stefan Bedacht, Rafal B. Zgadzaj, Watson Henderson, Aaron Bernstein, Gilliss Dyer, Mikael Martinez, Erhard Gaul, Todd Ditmire, Michael C. Downer Apr 2010

Numerical Modelling Of A 10-Cm-Long Multi-Gev Laser Wakefield Accelerator Driven By A Self-Guided Petawatt Pulse, Serguei Y. Kalmykov, Sunghwan A. Yi, Arnaud Beck, Agustin F. Lifschitz, Xavier Davoine, Erik Lefebvre, Alexander Pukhov, Vladimir N. Khudik, Gennady Shvets, Steven A. Reed, Peng Dong, Xiaoming Wang, Dongsu Du, Stefan Bedacht, Rafal B. Zgadzaj, Watson Henderson, Aaron Bernstein, Gilliss Dyer, Mikael Martinez, Erhard Gaul, Todd Ditmire, Michael C. Downer

Serge Youri Kalmykov

The use of a short-pulse petawatt (PW) laser (sub-200 fs duration, ~ 1 micron wavelength) enables experimental realization of a self-guided, multicentimetre-long multi-GeV laser wakefield electron accelerator. A comprehensive set of numerical simulations showed that a 150 fs, 1.33 PW pulse is self- guided over 10 cm of a static filling gaseous plasma of density 1–3 x 10^{17} cm^{−3} and is stable against relativistic filamentation. A fully broken electromagnetic wake (electron density ‘bubble’) is excited over the entire interaction length. Variations of bubble size and shape associated with nonlinear evolution of the driving pulse result in self-injection of background plasma …


Holographic Visualization Of Laser Wakefields, Peng Dong, Steven A. Reed, Sunghwan A. Yi, Serguei Y. Kalmykov, Zhengyan Y. Li, Gennady Shvets, Nicholas H. Matlis, Christopher Mcguffey, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Karl Krushelnick, Anatoly Maksimchuk, Takeshi Matsuoka, Alexander G. R. Thomas, Victor Yanovsky, Michael C. Downer Apr 2010

Holographic Visualization Of Laser Wakefields, Peng Dong, Steven A. Reed, Sunghwan A. Yi, Serguei Y. Kalmykov, Zhengyan Y. Li, Gennady Shvets, Nicholas H. Matlis, Christopher Mcguffey, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Karl Krushelnick, Anatoly Maksimchuk, Takeshi Matsuoka, Alexander G. R. Thomas, Victor Yanovsky, Michael C. Downer

Serge Youri Kalmykov

We report ‘snapshots’ of laser-generated plasma accelerator structures acquired by frequency domain holography (FDH) and frequency domain shadowgraphy (FDS), techniques for visualizing quasi-static objects propagating near the speed of light. FDH captures images of sinusoidal wakes in mm-length plasmas of density 1 < n_{e} < 5 x 10^{18} cm^{−3} from phase modulations they imprint on co-propagating probe pulses. Changes in the wake structure (such as the curvature of the wavefront), caused by the laser and plasma parameter variations from shot to shot, were observed. FDS visualizes lasergenerated electron density bubbles in mm-length plasmas of density n_{e} > 10^{19} cm^{−3} using amplitude modulations they imprint on co-propagating probe pulses. Variations in the spatio-temporal structure of bubbles are inferred from corresponding variations in the shape of ‘bullets’ of probe light trapped inside them and correlated with mono-energetic electron generation. Both FDH and FDS average over structural variations that occur during propagation through the plasma medium. We explore …


Formation Of Optical Bullets In Laser-Driven Plasma Bubble Accelerators, Peng Dong, Steven A. Reed, Sunghwan A. Yi, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer, Nicholas H. Matlis, Wim P. Leemans, Christopher Mcguffey, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Karl Krushelnick, Anatoly Maksimchuk, Takeshi Matsuoka, Alexander G. R. Thomas, Victor Yanovsky Apr 2010

Formation Of Optical Bullets In Laser-Driven Plasma Bubble Accelerators, Peng Dong, Steven A. Reed, Sunghwan A. Yi, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer, Nicholas H. Matlis, Wim P. Leemans, Christopher Mcguffey, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Karl Krushelnick, Anatoly Maksimchuk, Takeshi Matsuoka, Alexander G. R. Thomas, Victor Yanovsky

Serge Youri Kalmykov

Electron density bubbles—wake structures generated in plasma of density n_{e} ~ 10^{19} cm^{-3} by the light pressure of intense ultrashort laser pulses—are shown to reshape weak copropagating probe pulses into optical ‘‘bullets.’’ The bullets are reconstructed using frequency-domain interferometric techniques in order to visualize bubble formation. Bullets are confined in three dimensions to plasma-wavelength size, and exhibit higher intensity, broader spectrum and flatter temporal phase than surrounding probe light, evidence of their compression by the bubble. Bullets observed at 0.8 < n_{e} < 1.2 x 10^{19} cm^{-3} provide the first observation of bubble formation below the electron capture threshold. At higher n_{e}, bullets appear with high shot-to-shot stability together with relativistic electrons that vary widely in spectrum, and help relate bubble formation to fast electron generation.


Electron Self-Injection And Trapping Into An Evolving Plasma Bubble, Serguei Y. Kalmykov, Sunghwan A. Yi, Vladimir N. Khudik, Gennady Shvets Sep 2009

Electron Self-Injection And Trapping Into An Evolving Plasma Bubble, Serguei Y. Kalmykov, Sunghwan A. Yi, Vladimir N. Khudik, Gennady Shvets

Serge Youri Kalmykov

The blowout (or bubble) regime of laser wakefield acceleration is promising for generating monochromatic high-energy electron beams out of low-density plasmas. It is shown analytically and by particle-in-cell simulations that self-injection of the background plasma electrons into the quasistatic plasma bubble can be caused by slow temporal expansion of the bubble. Sufficient criteria for the electron trapping and bubble’s expansion rate are derived using a semianalytic nonstationary Hamiltonian theory. It is further shown that the combination of bubble’s expansion and contraction results in monoenergetic electron beams.


All-Optical Control Of Nonlinear Focusing Of Laser Beams In Plasma Beat Wave Accelerator, Serguei Y. Kalmykov, Sunghwan A. Yi, Gennady Shvets Jan 2009

All-Optical Control Of Nonlinear Focusing Of Laser Beams In Plasma Beat Wave Accelerator, Serguei Y. Kalmykov, Sunghwan A. Yi, Gennady Shvets

Serge Youri Kalmykov

Nonlinear focusing of a bi-color laser in plasma can be controlled by varying the difference frequency \Omega. The driven electron density perturbation forms a co-moving periodic focusing (de-focusing) channel if \Omega is below (above) the electron Langmuir frequency \omega_p. Hence, the beam focusing is enhanced for \Omega < \omega_p and is suppressed otherwise. In particular, a catastrophic relativistic self-focusing of a high-power laser beam can be prevented all-optically by a second, much weaker, co-propagating beam shifted in frequency by \Omega > \omega_p. A bi-envelope equation describing the early stage of the mutual de-focusing is derived and analyzed. Later stages, characterized by a well-developed electromagnetic cascade, are investigated numerically. Stable propagation of the over-critical laser pulse over several Rayleigh lengths is predicted. The non-resonant plasma beat wave (\Omega \not= \omega_p) can accelerate pre-injected electrons above …


All-Optical Suppression Of Relativistic Self-Focusing Of Laser Beams In Plasmas, Serguei Y. Kalmykov, Sunghwan A. Yi, Gennady Shvets Oct 2008

All-Optical Suppression Of Relativistic Self-Focusing Of Laser Beams In Plasmas, Serguei Y. Kalmykov, Sunghwan A. Yi, Gennady Shvets

Serge Youri Kalmykov

It is demonstrated that a catastrophic relativistic self-focusing (RSF) of a high-power laser pulse can be prevented all-optically by a second, much weaker, copropagating pulse. RSF suppression occurs when the difference frequency of the pulses slightly exceeds the electron plasma frequency. The mutual defocusing is caused by the three-dimensional electron density perturbation driven by the laser beat wave slightly above the plasma resonance. A bi-envelope model describing the early stage of the mutual defocusing is derived and analyzed. Later stages, characterized by the presence of a strong electromagnetic cascade, are investigated numerically. Stable propagation of the laser pulse with weakly …


Studies Of Laser Wakefield Structures And Electron Acceleration In Underdense Plasmas, Anatoly Maksimchuk, Steven A. Reed, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Takeshi Matsuoka, Christopher Mcguffey, Gerard Mourou, Natalia Naumova, John Nees, Pascal Rousseau, Victor Yanovsky, Karl Krushelnick, Nicholas H. Matlis, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer, C. R. Vane, J. R. Beene, Daniel W. Stracener, David R. Schultz Apr 2008

Studies Of Laser Wakefield Structures And Electron Acceleration In Underdense Plasmas, Anatoly Maksimchuk, Steven A. Reed, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Takeshi Matsuoka, Christopher Mcguffey, Gerard Mourou, Natalia Naumova, John Nees, Pascal Rousseau, Victor Yanovsky, Karl Krushelnick, Nicholas H. Matlis, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer, C. R. Vane, J. R. Beene, Daniel W. Stracener, David R. Schultz

Serge Youri Kalmykov

Experiments on electron acceleration and optical diagnostics of laser wakes were performed on the HERCULES facility in a wide range of laser and plasma parameters. Using frequency domain holography we demonstrated single shot visualization of individual plasma waves, produced by 40 TW, 30 fs laser pulses focused to the intensity of 10^{19} W/cm^2 onto a supersonic He gas jet with plasma densities n_e ~ 10^{19} cm^{−3}. These holographic “snapshots” capture the variation in shape of the plasma wave with distance behind the driver, and resolve wave front curvature seen previously only in simulations. High-energy quasimonoenergetic electron beams were generated using …


Guiding Of Laser Beams In Plasmas By Radiation Cascade Compression, Serguei Y. Kalmykov, Gennady Shvets Nov 2006

Guiding Of Laser Beams In Plasmas By Radiation Cascade Compression, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

The near-resonant beatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 46403 (2006)]. In the …


Injection, Trapping, And Acceleration Of Electrons In A Three-Dimensional Nonlinear Laser Wakefield, Serguei Y. Kalmykov, Leonid M. Gorbunov, Patrick Mora, Gennady Shvets Oct 2006

Injection, Trapping, And Acceleration Of Electrons In A Three-Dimensional Nonlinear Laser Wakefield, Serguei Y. Kalmykov, Leonid M. Gorbunov, Patrick Mora, Gennady Shvets

Serge Youri Kalmykov

It is demonstrated that the accelerating and focusing phases of the nonlinear three-dimensional axisymmetric laser wake can almost entirely overlap starting from a certain distance behind the laser pulse in homogeneous plasma. Such field structure results from the curvature of phase fronts due to the radially inhomogeneous relativistic shift of plasma frequency. Consequently, the number of trapped low-energy electrons can be much greater than that predicted by the linear wake theory. This effect is favorable for quasi-monoenergetic acceleration of a considerable charge (several hundreds of pC) to about 1 GeV per electron in the plasma wakefield driven by an ultrashort …