Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Optical Counterparts Of Two Fermi Millisecond Pulsars: Psr J1301+0833 And Psr J1628–3205, Miao Li, Jules P. Halpern, John R. Thorstensen Oct 2014

Optical Counterparts Of Two Fermi Millisecond Pulsars: Psr J1301+0833 And Psr J1628–3205, Miao Li, Jules P. Halpern, John R. Thorstensen

Dartmouth Scholarship

Using the 1.3 m and 2.4 m Telescopes of the MDM Observatory, we identified the close companions of two eclipsing millisecond radio pulsars that were discovered by the Green Bank Telescope in searches of Fermi Gamma-ray Space Telescope sources, and measured their light curves. PSR J1301+0833 is a black widow pulsar in a 6.5 hr orbit whose companion star is strongly heated on the side facing the pulsar. It varies from R = 21.8 to R > 24 around the orbit. PSR J1628–3205 is a "redback," a nearly Roche-lobe-filling system in a 5.0 hr orbit whose optical modulation in the range …


The Halo Occupation Distribution Of X-Ray-Bright Active Galactic Nuclei: A Comparison With Luminous Quasars, Jonathan Richardson, Suchetana Chatterjee, Zheng Zheng, Adam D. Myers, Ryan Hickox Dec 2013

The Halo Occupation Distribution Of X-Ray-Bright Active Galactic Nuclei: A Comparison With Luminous Quasars, Jonathan Richardson, Suchetana Chatterjee, Zheng Zheng, Adam D. Myers, Ryan Hickox

Dartmouth Scholarship

We perform halo occupation distribution (HOD) modeling of the projected two-point correlation function (2PCF) of high-redshift (z~1.2) X-ray-bright active galactic nuclei (AGN) in the XMM-COSMOS field measured by Allevato et al. The HOD parameterization is based on low-luminosity AGN in cosmological simulations. At the median redshift of z~1.2, we derive a median mass of (1.02+0.21/-0.23)x10^{13} Msun/h for halos hosting central AGN and an upper limit of ~10% on the AGN satellite fraction. Our modeling results indicate (at the 2.5-sigma level) that X-ray AGN reside in more massive halos compared to more bolometrically luminous, optically-selected quasars at similar redshift. The modeling …


The Fast And Furious Decay Of The Peculiar Type Ic Supernova 2005ek, M. R. Drout, A. M. Soderberg, P. A. Mazzali, J. T. Parrent Aug 2013

The Fast And Furious Decay Of The Peculiar Type Ic Supernova 2005ek, M. R. Drout, A. M. Soderberg, P. A. Mazzali, J. T. Parrent

Dartmouth Scholarship

We present extensive multi-wavelength observations of the extremely rapidly declining Type Ic supernova (SN Ic), SN 2005ek. Reaching a peak magnitude of MR = –17.3 and decaying by ~3 mag in the first 15 days post-maximum, SN 2005ek is among the fastest Type I supernovae observed to date. The spectra of SN 2005ek closely resemble those of normal SN Ic, but with an accelerated evolution. There is evidence for the onset of nebular features at only nine days post-maximum. Spectroscopic modeling reveals an ejecta mass of ~0.3 M that is dominated by oxygen (~80%), while the pseudo-bolometric light …


Turbulence And Bias-Induced Flows In Simple Magnetized Toroidal Plasmas, B. Li, B. N. Rogers, P. Ricci, K. W. Gentle May 2011

Turbulence And Bias-Induced Flows In Simple Magnetized Toroidal Plasmas, B. Li, B. N. Rogers, P. Ricci, K. W. Gentle

Dartmouth Scholarship

Turbulence and bias-induced flows in simple magnetized toroidal plasmas are explored with global three- dimensional fluid simulations, focusing on the parameters of the Helimak experiment. The simulations show that plasma turbulence and transport in the regime of interest are dominated by the ideal interchange instability. The application of a bias voltage alters the structure of the plasma potential, resulting in the equilibrium sheared flows. These bias-induced vertical flows located in the gradient region appear to reduce the radial extent of turbulent structures, and thereby lower the radial plasma transport on the low field side.


Empirical Geographic Modeling Of Switchgrass Yields In The United States, Henriette I. Jager, Latha M. Baskaran, Craig C. Brandt, Ethan B. Davis Sep 2010

Empirical Geographic Modeling Of Switchgrass Yields In The United States, Henriette I. Jager, Latha M. Baskaran, Craig C. Brandt, Ethan B. Davis

Dartmouth Scholarship

Switchgrass (Panicum virgatum L.) is a perennial grass native to the United States that has been studied as a sustainable source of biomass fuel. Although many field‐scale studies have examined the potential of this grass as a bioenergy crop, these studies have not been integrated. In this study, we present an empirical model for switchgrass yield and use this model to predict yield for the conterminous United States. We added environmental covariates to assembled yield data from field trials based on geographic location. We developed empirical models based on these data. The resulting empirical models, which account for spatial …


Long-Lived Time-Dependent Remnants During Cosmological Symmetry Breaking: From Inflation To The Electroweak Scale, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos Aug 2010

Long-Lived Time-Dependent Remnants During Cosmological Symmetry Breaking: From Inflation To The Electroweak Scale, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos

Dartmouth Scholarship

Through a detailed numerical investigation in three spatial dimensions, we demonstrate that long-lived time-dependent field configurations emerge dynamically during symmetry breaking in an expanding de Sitter spacetime. We investigate two situations: a single scalar field with a double-well potential and an SU(2) non-Abelian Higgs model. For the single scalar, we show that large-amplitude oscillon configurations emerge spontaneously and persist to contribute about 1.2% of the energy density of the Universe. We also show that for a range of parameters, oscillon lifetimes are enhanced by the expansion and that this effect is a result of parametric resonance. For the SU(2) case, …


Perpendicular Ion Heating By Low-Frequency Alfvén-Wave Turbulence In The Solar Wind, Benjamin D. G. Chandran, Bo Li, Barrett N. Rogers, Eliot Quataert, Kai Germaschewski Aug 2010

Perpendicular Ion Heating By Low-Frequency Alfvén-Wave Turbulence In The Solar Wind, Benjamin D. G. Chandran, Bo Li, Barrett N. Rogers, Eliot Quataert, Kai Germaschewski

Dartmouth Scholarship

We consider ion heating by turbulent Alfvén waves (AWs) and kinetic Alfvén waves (KAWs) with wavelengths (measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies ω smaller than the ion cyclotron frequency Ω. We focus on plasmas in which β < 1, where β is the ratio of plasma pressure to magnetic pressure. As in previous studies, we find that when the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments, we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity ε = δv ρ/v , where v (v ) is the component of the ion velocity perpendicular (parallel) to the background magnetic field B 0, and δv ρB ρ) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case …


Stirring Up The Pot: Can Cooling Flows In Galaxy Clusters Be Quenched By Gas Sloshing?, J. A. A. Zuhone, M. Markevitch, R. E. Johnson Jun 2010

Stirring Up The Pot: Can Cooling Flows In Galaxy Clusters Be Quenched By Gas Sloshing?, J. A. A. Zuhone, M. Markevitch, R. E. Johnson

Dartmouth Scholarship

X-ray observations of clusters of galaxies reveal the presence of edges in surface brightness and temperature, known as "cold fronts." In relaxed clusters with cool cores, these commonly observed edges have been interpreted as evidence for the "sloshing" of the core gas in the cluster's gravitational potential. Such sloshing may provide a source of heat to the cluster core by mixing hot gas from the cluster outskirts with the cool-core gas. Using high-resolution N-body/Eulerian hydrodynamic simulations, we model gas sloshing in galaxy clusters initiated by mergers with subclusters. The simulations include merger scenarios with gas-filled and gasless subclusters. The …


Low-Frequency Turbulence In A Linear Magnetized Plasma, B. N. Rogers, Paolo Ricci Mar 2010

Low-Frequency Turbulence In A Linear Magnetized Plasma, B. N. Rogers, Paolo Ricci

Dartmouth Scholarship

Plasma turbulence in a linear device is explored for the first time with three-dimensional global two-fluid simulations, focusing on the plasma parameters of the Large Plasma Device. Three instabilities are present in the simulations: the Kelvin-Helmholtz instability, a sheath-driven instability, and a resistive drift wave instability. The Kelvin-Helmholtz mode is shown to dominate the transport of plasma across the magnetic field. Simple scaling laws are obtained for the plasma profiles.


Core Gas Sloshing In Abell 1644, Ryan E. Johnson, Maxim Markevitch, Gary A. Wegner, Christine Jones, William R. Forman Feb 2010

Core Gas Sloshing In Abell 1644, Ryan E. Johnson, Maxim Markevitch, Gary A. Wegner, Christine Jones, William R. Forman

Dartmouth Scholarship

We present an analysis of a 72 ks Chandra observation of the double cluster Abell 1644 (z = 0.047). The X-ray temperatures indicate that the masses are M 500 = (2.6 ± 0.4) × 1014 h –1 M for the northern sub-cluster and M 500 = (3.1 ± 0.4) × 1014 h –1 M for the southern, main cluster. We identify a sharp edge in the radial X-ray surface brightness of the main cluster, which we find to be a cold front, with a jump in temperature of a factor of ~3. This edge possesses …


Hydrodynamic Relaxation Of An Electron Plasma To A Near-Maximum Entropy State, D. J. Rodgers, S. Servidio, W. H. Matthaeus, D. C. Montgomery, T. B. Mitchell, T. Aziz Jun 2009

Hydrodynamic Relaxation Of An Electron Plasma To A Near-Maximum Entropy State, D. J. Rodgers, S. Servidio, W. H. Matthaeus, D. C. Montgomery, T. B. Mitchell, T. Aziz

Dartmouth Scholarship

Dynamical relaxation of a pure electron plasma in a Malmberg-Penning trap is studied, comparing experiments, numerical simulations and statistical theories of weakly dissipative two-dimensional (2D) turbulence. Simulations confirm that the dynamics are approximated well by a 2D hydrodynamic model. Statistical analysis favors a theoretical picture of relaxation to a near-maximum entropy state with constrained energy, circulation, and angular momentum. This provides evidence that 2D electron fluid relaxation in a turbulent regime is governed by principles of maximum entropy.


Analytical Characterization Of Oscillon Energy And Lifetime, Marcelo Gleiser, David Sicilia Jul 2008

Analytical Characterization Of Oscillon Energy And Lifetime, Marcelo Gleiser, David Sicilia

Dartmouth Scholarship

We develop an analytical procedure to compute all relevant physical properties of scalar field oscillons in models with quartic polynomial potentials: energy, radius, frequency, core amplitude, and lifetime. We compare our predictions to numerical simulations of models with symmetric and asymmetric double-well potentials in three spatial dimensions, obtaining excellent agreement. We also explain why oscillons have not been seen to decay in two spatial dimensions.


Large Scale Structure As A Probe Of Gravitational Slip, Scott F. Daniel, Robert R. Caldwell, Asantha Cooray, Alessandro Melchiorri May 2008

Large Scale Structure As A Probe Of Gravitational Slip, Scott F. Daniel, Robert R. Caldwell, Asantha Cooray, Alessandro Melchiorri

Dartmouth Scholarship

A new time-dependent, scale-independent parameter, ϖ, is employed in a phenomenological model of the deviation from general relativity in which the Newtonian and longitudinal gravitational potentials slip apart on cosmological scales as dark energy, assumed to be arising from a new theory of gravitation, appears to dominate the Universe. A comparison is presented between ϖ and other parametrized post-Friedmannian models in the literature. The effect of ϖ on the cosmic microwave background anisotropy spectrum, the growth of large-scale structure, the galaxy weak-lensing correlation function, and cross correlations of cosmic microwave background anisotropy with galaxy clustering are illustrated. Cosmological models with …


Evaluating Opportunistic Routing Protocols With Large Realistic Contact Traces, Libo Song, David Kotz Sep 2007

Evaluating Opportunistic Routing Protocols With Large Realistic Contact Traces, Libo Song, David Kotz

Dartmouth Scholarship

Traditional mobile ad hoc network (MANET) routing protocols assume that contemporaneous end-to-end communication paths exist between data senders and receivers. In some mobile ad hoc networks with a sparse node population, an end-to-end communication path may break frequently or may not exist at any time. Many routing protocols have been proposed in the literature to address the problem, but few were evaluated in a realistic “opportunistic” network setting. We use simulation and contact traces (derived from logs in a production network) to evaluate and compare five existing protocols: direct-delivery, epidemic, random, PRoPHET, and Link-State, as well as our own proposed …


Small-Scale Turbulence In A Closed-Field-Line Geometry, Paolo Ricci, B. N. Rogers, W. Dorland Dec 2006

Small-Scale Turbulence In A Closed-Field-Line Geometry, Paolo Ricci, B. N. Rogers, W. Dorland

Dartmouth Scholarship

Plasma turbulence due to small-scale entropy modes is studied with gyrokinetic simulations in a simple closed-field-line geometry, the Z pinch, in low-β parameter regimes that are stable to ideal interchange modes. We find an enormous variation in the nonlinear dynamics and particle transport as a function of two main parameters, the density gradient and the plasma collisionality. This variation is explained in part by the damping and stability properties of spontaneously formed zonal flows in the system. As in toroidal systems, the zonal flows can lead to a strong nonlinear suppression of transport below a critical gradient that is determined …