Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

A Path Planning Framework For Multi-Agent Robotic Systems Based On Multivariate Skew-Normal Distributions, Peter Estephan Jan 2023

A Path Planning Framework For Multi-Agent Robotic Systems Based On Multivariate Skew-Normal Distributions, Peter Estephan

Theses, Dissertations and Capstones

This thesis presents a path planning framework for a very-large-scale robotic (VLSR) system in an known obstacle environment, where the time-varying distributions of agents are applied to represent the multi-agent robotic system (MARS). A novel family of the multivariate skew-normal (MVSN) distributions is proposed based on the Bernoulli random field (BRF) referred to as the Bernoulli-random-field based skew-normal (BRF-SN) distribution. The proposed distributions are applied to model the agents’ distributions in an obstacle-deployed environment, where the obstacle effect is represented by a skew function and separated from the no-obstacle agents’ distributions. First, the obstacle layout is represented by a Hilbert …


Analysis And Implementation Of The Maximum Likelihood Expectation Maximization Algorithm For Find, Angus Boyd Jameson Dec 2020

Analysis And Implementation Of The Maximum Likelihood Expectation Maximization Algorithm For Find, Angus Boyd Jameson

Student Research Projects

This thesis presents an organized explanation and breakdown of the Maximum Likelihood Expectation Maximization image reconstruction algorithm. This background research was used to develop a means of implementing the algorithm into the imaging code for UNH's Field Deployable Imaging Neutron Detector to improve its ability to resolve complex neutron sources. This thesis provides an overview for this implementation scheme, and include the results of a couple of reconstruction tests for the algorithm. A discussion is given on the current state of the algorithm and its integration with the neutron detector system, and suggestions are given for how the work and …


Mixture Models With Grouping Structure: Retail Analytics Applications, Haidar Almohri Jan 2018

Mixture Models With Grouping Structure: Retail Analytics Applications, Haidar Almohri

Wayne State University Dissertations

Growing competitiveness and increasing availability of data is generating tremendous interest in data-driven analytics across industries. In the retail sector, stores need targeted guidance to improve both the efficiency and effectiveness of individual stores based on their specific location, demographics, and environment. We propose an effective data-driven framework for internal benchmarking that can lead to targeted guidance for individual stores. In particular, we propose an objective method for segmenting stores using a model-based clustering technique that accounts for similarity in store performance dynamics. It relies on effective Finite Mixture of Regression (FMR) techniques for carrying out the model-based clustering with …


A Classification Tool For Predictive Data Analysis In Healthcare, Mason Lemoyne Victors Mar 2013

A Classification Tool For Predictive Data Analysis In Healthcare, Mason Lemoyne Victors

Theses and Dissertations

Hidden Markov Models (HMMs) have seen widespread use in a variety of applications ranging from speech recognition to gene prediction. While developed over forty years ago, they remain a standard tool for sequential data analysis. More recently, Latent Dirichlet Allocation (LDA) was developed and soon gained widespread popularity as a powerful topic analysis tool for text corpora. We thoroughly develop LDA and a generalization of HMMs and demonstrate the conjunctive use of both methods in predictive data analysis for health care problems. While these two tools (LDA and HMM) have been used in conjunction previously, we use LDA in a …


Scaling Bayesian Network Parameter Learning With Expectation Maximization Using Mapreduce, Erik B. Reed, Ole J. Mengshoel Nov 2012

Scaling Bayesian Network Parameter Learning With Expectation Maximization Using Mapreduce, Erik B. Reed, Ole J. Mengshoel

Ole J Mengshoel

Bayesian network (BN) parameter learning from incomplete data can be a computationally expensive task for incomplete data. Applying the EM algorithm to learn BN parameters is unfortunately susceptible to local optima and prone to premature convergence. We develop and experiment with two methods for improving EM parameter learning by using MapReduce: Age-Layered Expectation Maximization (ALEM) and Multiple Expectation Maximization (MEM). Leveraging MapReduce for distributed machine learning, these algorithms (i) operate on a (potentially large) population of BNs and (ii) partition the data set as is traditionally done with MapReduce machine learning. For example, we achieved gains using the Hadoop implementation …


Mapreduce For Bayesian Network Parameter Learning Using The Em Algorithm, Aniruddha Basak, Irina Brinster, Ole J. Mengshoel Nov 2012

Mapreduce For Bayesian Network Parameter Learning Using The Em Algorithm, Aniruddha Basak, Irina Brinster, Ole J. Mengshoel

Ole J Mengshoel

This work applies the distributed computing framework MapReduce to Bayesian network parameter learning from incomplete data. We formulate the classical Expectation Maximization (EM) algorithm within the MapReduce framework. Analytically and experimentally we analyze the speed-up that can be obtained by means of MapReduce. We present details of the MapReduce formulation of EM, report speed-ups versus the sequential case, and carefully compare various Hadoop cluster configurations in experiments with Bayesian networks of different sizes and structures.


Age-Layered Expectation Maximization For Parameter Learning In Bayesian Networks, Avneesh Saluja, Priya Sundararajan, Ole J. Mengshoel Apr 2012

Age-Layered Expectation Maximization For Parameter Learning In Bayesian Networks, Avneesh Saluja, Priya Sundararajan, Ole J. Mengshoel

Ole J Mengshoel

The expectation maximization (EM) algorithm is a popular algorithm for parameter estimation in models with hidden variables. However, the algorithm has several non-trivial limitations, a significant one being variation in eventual solutions found, due to convergence to local optima. Several techniques have been proposed to allay this problem, for example initializing EM from multiple random starting points and selecting the highest likelihood out of all runs. In this work, we a) show that this method can be very expensive computationally for difficult Bayesian networks, and b) in response we propose an age-layered EM approach (ALEM) that efficiently discards less promising …