Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physical Sciences and Mathematics

Learning From Sequential User Data: Models And Sample-Efficient Algorithms, Aritra Ghosh Apr 2023

Learning From Sequential User Data: Models And Sample-Efficient Algorithms, Aritra Ghosh

Doctoral Dissertations

Recent advances in deep learning have made learning representation from ever-growing datasets possible in the domain of vision, natural language processing (NLP), and robotics, among others. However, deep networks are notoriously data-hungry; for example, training language models with attention mechanisms sometimes requires trillions of parameters and tokens. In contrast, we can often access a limited number of samples in many tasks. It is crucial to learn models from these `limited' datasets. Learning with limited datasets can take several forms. In this thesis, we study how to select data samples sequentially such that downstream task performance is maximized. Moreover, we study …


Remote Sensing Of High Latitude Rivers: Approaches, Insights, And Future Ramifications, Merritt E. Harlan Jun 2022

Remote Sensing Of High Latitude Rivers: Approaches, Insights, And Future Ramifications, Merritt E. Harlan

Doctoral Dissertations

High latitude rivers across the pan-Arctic domain are changing due to changes in climate and positive Arctic feedback loops. Understanding and contextualizing these changes is challenging due to a lack of data and methods for estimating and modeling river discharge, and mapping rivers. Remote sensing, and the availability of satellite imagery can provide ways to overcome these challenges. Through combining various forms of fieldwork, modeling, deep learning, and remote sensing, we contribute methodologies and knowledge to three key challenges associated with better understanding high latitude rivers. In the first chapter, we combine field data that can be rapidly deployed with …


Deep Learning Models For Irregularly Sampled And Incomplete Time Series, Satya Narayan Shukla Oct 2021

Deep Learning Models For Irregularly Sampled And Incomplete Time Series, Satya Narayan Shukla

Doctoral Dissertations

Irregularly sampled time series data arise naturally in many application domains including biology, ecology, climate science, astronomy, geology, finance, and health. Such data present fundamental challenges to many classical models from machine learning and statistics. The first challenge with modeling such data is the presence of variable time gaps between the observation time points. The second challenge is that the dimensionality of the inputs can be different for different data cases. This occurs naturally due to the fact that different data cases are likely to include different numbers of observations. The third challenge is that different irregularly sampled instances have …


Utilizing Graph Structure For Machine Learning, Stefan Dernbach Apr 2021

Utilizing Graph Structure For Machine Learning, Stefan Dernbach

Doctoral Dissertations

The information age has led to an explosion in the size and availability of data. This data often exhibits graph-structure that is either explicitly defined, as in the web of a social network, or is implicitly defined and can be determined by measuring similarity between objects. Utilizing this graph-structure allows for the design of machine learning algorithms that reflect not only the attributes of individual objects but their relationships to every other object in the domain as well. This thesis investigates three machine learning problems and proposes novel methods that leverage the graph-structure inherent in the tasks. Quantum walk neural …


Neural Methods For Answer Passage Retrieval Over Sparse Collections, Daniel Cohen Apr 2021

Neural Methods For Answer Passage Retrieval Over Sparse Collections, Daniel Cohen

Doctoral Dissertations

Recent advances in machine learning have allowed information retrieval (IR) techniques to advance beyond the stage of handcrafting domain specific features. Specifically, deep neural models incorporate varying levels of features to learn whether a document answers the information need of a query. However, these neural models rely on a large number of parameters to successfully learn a relation between a query and a relevant document.

This reliance on a large number of parameters, combined with the current methods of optimization relying on small updates necessitates numerous samples to allow the neural model to converge on an effective relevance function. This …


Improving Visual Recognition With Unlabeled Data, Aruni Roy Chowdhury Jul 2020

Improving Visual Recognition With Unlabeled Data, Aruni Roy Chowdhury

Doctoral Dissertations

The success of deep neural networks has resulted in computer vision systems that obtain high accuracy on a wide variety of tasks such as image classification, object detection, semantic segmentation, etc. However, most state-of-the-art vision systems are dependent upon large amounts of labeled training data, which is not a scalable solution in the long run. This work focuses on improving existing models for visual object recognition and detection without being dependent on such large-scale human-annotated data. We first show how large numbers of hard examples (cases where an existing model makes a mistake) can be obtained automatically from unlabeled video …


Higher-Order Representations For Visual Recognition, Tsung-Yu Lin Mar 2020

Higher-Order Representations For Visual Recognition, Tsung-Yu Lin

Doctoral Dissertations

In this thesis, we present a simple and effective architecture called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an image as a pooled outer product of features derived from two CNNs and capture localized feature interactions in a translationally invariant manner. B-CNNs generalize classical orderless texture-based image models such as bag-of-visual-words and Fisher vector representations. However, unlike prior work, they can be trained in an end-to-end manner. In the experiments, we demonstrate that these representations generalize well to novel domains by fine-tuning and achieve excellent results on fine-grained, texture and scene recognition tasks. The visualization of fine-tuned convolutional filters …


Improving Face Clustering In Videos, Souyoung Jin Mar 2020

Improving Face Clustering In Videos, Souyoung Jin

Doctoral Dissertations

Human faces represent not only a challenging recognition problem for computer vision, but are also an important source of information about identity, intent, and state of mind. These properties make the analysis of faces important not just as algorithmic challenges, but as a gateway to developing computer vision methods that can better follow the intent and goals of human beings. In this thesis, we are interested in face clustering in videos. Given a raw video, with no caption or annotation, we want to group all detected faces by their identity. We address three problems in the area of face clustering …


Neural Models For Information Retrieval Without Labeled Data, Hamed Zamani Oct 2019

Neural Models For Information Retrieval Without Labeled Data, Hamed Zamani

Doctoral Dissertations

Recent developments of machine learning models, and in particular deep neural networks, have yielded significant improvements on several computer vision, natural language processing, and speech recognition tasks. Progress with information retrieval (IR) tasks has been slower, however, due to the lack of large-scale training data as well as neural network models specifically designed for effective information retrieval. In this dissertation, we address these two issues by introducing task-specific neural network architectures for a set of IR tasks and proposing novel unsupervised or \emph{weakly supervised} solutions for training the models. The proposed learning solutions do not require labeled training data. Instead, …


Efficient Self-Supervised Deep Sensorimotor Learning In Robotics, Takeshi Takahashi Oct 2019

Efficient Self-Supervised Deep Sensorimotor Learning In Robotics, Takeshi Takahashi

Doctoral Dissertations

Deep learning has been successful in a variety of applications, such as object recognition, video games, and machine translation. Deep neural networks can automatically learn important features given large training datasets. However, the success of deep learning in robotic systems in the real world is still limited mainly because obtaining large datasets and labeling are costly. As a result, much of the successful work in deep learning has been limited to domains where large datasets are readily available or easily collected. To address this issue, I propose a framework for acquiring re-usable skills efficiently combining intrinsic motivation and the control …


Machine Learning Models For Efficient And Robust Natural Language Processing, Emma Strubell Oct 2019

Machine Learning Models For Efficient And Robust Natural Language Processing, Emma Strubell

Doctoral Dissertations

Natural language processing (NLP) has come of age. For example, semantic role labeling (SRL), which automatically annotates sentences with a labeled graph representing who did what to whom, has in the past ten years seen nearly 40% reduction in error, bringing it to useful accuracy. As a result, a myriad of practitioners now want to deploy NLP systems on billions of documents across many domains. However, state-of-the-art NLP systems are typically not optimized for cross-domain robustness nor computational efficiency. In this dissertation I develop machine learning methods to facilitate fast and robust inference across many common NLP tasks. First, …


Deep-Learned Generative Representations Of 3d Shape Families, Haibin Huang Nov 2017

Deep-Learned Generative Representations Of 3d Shape Families, Haibin Huang

Doctoral Dissertations

Digital representations of 3D shapes are becoming increasingly useful in several emerging applications, such as 3D printing, virtual reality and augmented reality. However, traditional modeling softwares require users to have extensive modeling experience, artistic skills and training to handle their complex interfaces and perform the necessary low-level geometric manipulation commands. Thus, there is an emerging need for computer algorithms that help novice and casual users to quickly and easily generate 3D content. In this work, I will present deep learning algorithms that are capable of automatically inferring parametric representations of shape families, which can be used to generate new 3D …


Deep Energy-Based Models For Structured Prediction, David Belanger Nov 2017

Deep Energy-Based Models For Structured Prediction, David Belanger

Doctoral Dissertations

We introduce structured prediction energy networks (SPENs), a flexible frame- work for structured prediction. A deep architecture is used to define an energy func- tion over candidate outputs and predictions are produced by gradient-based energy minimization. This deep energy captures dependencies between labels that would lead to intractable graphical models, and allows us to automatically discover discrim- inative features of the structured output. Furthermore, practitioners can explore a wide variety of energy function architectures without having to hand-design predic- tion and learning methods for each model. This is because all of our prediction and learning methods interact with the energy …


Unsupervised Joint Alignment, Clustering And Feature Learning, Mohamed Marwan Mattar Aug 2014

Unsupervised Joint Alignment, Clustering And Feature Learning, Mohamed Marwan Mattar

Doctoral Dissertations

Joint alignment is the process of transforming instances in a data set to make them more similar based on a pre-defined measure of joint similarity. This process has great utility and applicability in many scientific disciplines including radiology, psychology, linguistics, vision, and biology. Most alignment algorithms suffer from two shortcomings. First, they typically fail when presented with complex data sets arising from multiple modalities such as a data set of normal and abnormal heart signals. Second, they require hand-picking appropriate feature representations for each data set, which may be time-consuming and ineffective, or outside the domain of expertise for practitioners. …


Incorporating Boltzmann Machine Priors For Semantic Labeling In Images And Videos, Andrew Kae Aug 2014

Incorporating Boltzmann Machine Priors For Semantic Labeling In Images And Videos, Andrew Kae

Doctoral Dissertations

Semantic labeling is the task of assigning category labels to regions in an image. For example, a scene may consist of regions corresponding to categories such as sky, water, and ground, or parts of a face such as eyes, nose, and mouth. Semantic labeling is an important mid-level vision task for grouping and organizing image regions into coherent parts. Labeling these regions allows us to better understand the scene itself as well as properties of the objects in the scene, such as their parts, location, and interaction within the scene. Typical approaches for this task include the conditional random field …


Weakly Supervised Learning For Unconstrained Face Processing, Gary B. Huang May 2012

Weakly Supervised Learning For Unconstrained Face Processing, Gary B. Huang

Open Access Dissertations

Machine face recognition has traditionally been studied under the assumption of a carefully controlled image acquisition process. By controlling image acquisition, variation due to factors such as pose, lighting, and background can be either largely eliminated or specifically limited to a study over a discrete number of possibilities. Applications of face recognition have had mixed success when deployed in conditions where the assumption of controlled image acquisition no longer holds. This dissertation focuses on this unconstrained face recognition problem, where face images exhibit the same amount of variability that one would encounter in everyday life. We formalize unconstrained face recognition …