Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Engineering

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 52

Full-Text Articles in Physical Sciences and Mathematics

Adsorption Of Crystal Violet Dye From Synthetic Wastewater By Ball-Milled Royal Palm Leaf Sheath, Neloy Sen, Nawrin Rahman Shefa, Kismot Reza, Sk Md Ali Zaker Shawon, Md. Wasikur Rahman Mar 2024

Adsorption Of Crystal Violet Dye From Synthetic Wastewater By Ball-Milled Royal Palm Leaf Sheath, Neloy Sen, Nawrin Rahman Shefa, Kismot Reza, Sk Md Ali Zaker Shawon, Md. Wasikur Rahman

Physics and Astronomy Faculty Publications and Presentations

The current study shows that using a batch approach to remove crystal violet dye from synthetic wastewater is feasible when using royal palm leaf sheath powder as an adsorbent. In order to investigate the effects of many parameters, including starting concentration, pH effect, dye concentration, adsorbent dose, contact time, and temperature, experiments were carried out under various operating conditions. Maximum removal was obtained at pH 6 and at a concentration of 100 ppm, which are considered as ideal values. The influence of pH and dye concentration was shown to be substantial. Langmuir, Freundlich, and Temkin isotherm models were fitted to …


Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi Jan 2024

Photoluminescence Switching In Quantum Dots Connected With Fluorinated And Hydrogenated Photochromic Molecules, Ephraiem S. Sarabamoun, Jonathan M. Bietsch, Pramod Aryal, Amelia G. Reid, Maurice Curran, Grayson Johnson, Esther H. R. Tsai, Charles W. Machan, Guijun Wang, Joshua J. Choi

Chemistry & Biochemistry Faculty Publications

We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier …


Reduced Metal Nanocatalysts For Selective Electrochemical Hydrogenation Of Biomass-Derived 5-(Hydroxymethyl)Furfural To 2, 5-Bis(Hydroxymethyl)Furan In Ambient Conditions, Baleeswaraiah Muchharla, Moumita Dikshit, Ujjwal Pokharel, Ravindranath Garimella, Adetayo Adedeji, Kapil Kumar, Wei Cao, Hani Elsayed-Ali, Kishor Kumar Sadasivuni, Naif Abdullah Al-Dhabi, Sandeep Kumar, Bijandra Kumar Jan 2023

Reduced Metal Nanocatalysts For Selective Electrochemical Hydrogenation Of Biomass-Derived 5-(Hydroxymethyl)Furfural To 2, 5-Bis(Hydroxymethyl)Furan In Ambient Conditions, Baleeswaraiah Muchharla, Moumita Dikshit, Ujjwal Pokharel, Ravindranath Garimella, Adetayo Adedeji, Kapil Kumar, Wei Cao, Hani Elsayed-Ali, Kishor Kumar Sadasivuni, Naif Abdullah Al-Dhabi, Sandeep Kumar, Bijandra Kumar

Chemistry & Biochemistry Faculty Publications

Selective electrochemical hydrogenation (ECH) of biomass-derived unsaturated organic molecules has enormous potential for sustainable chemical production. However, an efficient catalyst is essential to perform an ECH reaction consisting of superior product selectivity and a higher conversion rate. Here, we examined the ECH performance of reduced metal nanostructures i.e., reduced Ag (rAg) and reduced copper (rCu) prepared via electrochemical or thermal oxidation and electrochemical reduction process, respectively. Surface morphological analysis suggests formation of nanocoral and entangled nanowire structure formation for rAg and rCu catalysts. rCu exhibits slight enhancement in ECH reaction performance in comparison to the pristine Cu. However, the rAg …


Metal Complexes Of Redox Active Ligands, Alexandra Chaparro, Parker Keller Apr 2022

Metal Complexes Of Redox Active Ligands, Alexandra Chaparro, Parker Keller

Chemistry & Biochemistry Student Scholarship

Alexandra Chaparro ’22, Major: Biochemistry

Parker Keller ’24, Major: Chemistry

Mentor: Dr. Maria Carroll, Chemistry and Biochemistry

Our research focuses on synthesizing and studying the properties of metal complexes that contain redox active ligands. Ligands are molecules or ions that can bind to a metal ion, and this particular class of ligands is interesting because they can either accept or lose electrons. We synthesized zinc complexes, in order to measure the reduction potentials of the ligands, which provide information about the ease with which they accept electrons. We then synthesized iron complexes and determined their structures. These complexes are potentially …


Uio-Type Metal-Organic Framework Derivatives As Sorbents For The Detection Of Gas-Phase Explosives, Matthew Ryan Sherrill Jan 2022

Uio-Type Metal-Organic Framework Derivatives As Sorbents For The Detection Of Gas-Phase Explosives, Matthew Ryan Sherrill

Legacy Theses & Dissertations (2009 - 2024)

The detection of energetic compounds – better known to the public as explosives – has is an important cornerstone of counterterrorism and homeland security . While significant advances have been achieved for the detection of trace explosives in various matrices such as soil, wastewater, and clothing, the detection of explosives in the gas phase remains challenging due to their infamously low vapor pressures. In this thesis, we leverage the high sensitivity of direct analysis in real-time mass spectrometry (DART-MS) and the microporosity of metal-organic frameworks (MOFs) to adsorb and therefore concentrate explosives from the vapor phase and subsequently detect them …


3d-Printable And Open-Source Modular Smartphone Visible Spectrophotometer, Brandon Winters, Nick Banfield, Cassandra Dixon, Anna Swensen, Dakota Holman, Braxton Fillbrown Oct 2021

3d-Printable And Open-Source Modular Smartphone Visible Spectrophotometer, Brandon Winters, Nick Banfield, Cassandra Dixon, Anna Swensen, Dakota Holman, Braxton Fillbrown

Chemistry Faculty Publications

The past four decades have brought significant and increasingly rapid changes to the world of instrument design, fabrication, and availability due to the emergence of 3D printing, open-source code and equipment, and low-cost electronics. These, along with other technological advances represent a nexus in time ripe for the wide-spread production and availability of low-cost sophisticated scientific equipment. To that end, the design of a 3D printable and open-source, modular spectrometer is described. This specific instrument is distinctly different from others that have been reported in recent years in that it was designed outside of the “black box” paradigm of …


Alternative View Of Oxygen Reduction On Porous Carbon Electrocatalysts: The Substance Of Complex Oxygen-Surface Interactions, Giacomo De Falco, Marc Florent, Jacek Jagiello, Yongqiang Cheng, Luke L. Daemen, Anibal J. Ramirez-Cuesta, Teresa J. Bandosz Mar 2021

Alternative View Of Oxygen Reduction On Porous Carbon Electrocatalysts: The Substance Of Complex Oxygen-Surface Interactions, Giacomo De Falco, Marc Florent, Jacek Jagiello, Yongqiang Cheng, Luke L. Daemen, Anibal J. Ramirez-Cuesta, Teresa J. Bandosz

Publications and Research

Electrochemical oxygen reduction reaction (ORR) is an important energy-related process requiring alternative catalysts to expensive platinum-based ones. Although recently some advancements in carbon catalysts have been reported, there is still a lack of understanding which surface features might enhance their efficiency for ORR. Through a detailed study of oxygen adsorption on carbon molecular sieves and using inelastic neutron scattering, we demonstrated here that the extent of oxygen adsorption/interactions with surface is an important parameter affecting ORR. It was found that both the strength of O2 physical adsorption in small pores and its specific interactions with surface ether functionalities in the …


Substituent Effects On The Solubility And Electronic Properties Of The Cyanine Dye Cy5: Density Functional And Time-Dependent Density Functional Theory Calculations, Austin Biaggne, William B. Knowlton, Bernard Yurke, Jeunghoon Lee, Lan Li Feb 2021

Substituent Effects On The Solubility And Electronic Properties Of The Cyanine Dye Cy5: Density Functional And Time-Dependent Density Functional Theory Calculations, Austin Biaggne, William B. Knowlton, Bernard Yurke, Jeunghoon Lee, Lan Li

Materials Science and Engineering Faculty Publications and Presentations

The aggregation ability and exciton dynamics of dyes are largely affected by properties of the dye monomers. To facilitate aggregation and improve excitonic function, dyes can be engineered with substituents to exhibit optimal key properties, such as hydrophobicity, static dipole moment differences, and transition dipole moments. To determine how electron donating (D) and electron withdrawing (W) substituents impact the solvation, static dipole moments, and transition dipole moments of the pentamethine indocyanine dye Cy5, density functional theory (DFT) and time-dependent (TD-) DFT calculations were performed. The inclusion of substituents had large effects on the solvation energy of Cy5, with pairs of …


In Depth Characterisation Of The Biomolecular Coronas Of Polymer Coated Inorganic Nanoparticles With Differential Centrifugal Sedimentation, André Perez-Potti, Hender Lopez, Beatriz Pelaz, Abuelmagd Abdelmonem, Mahmoud G. Soliman, Ingmar Schoen, Philip M. Kelly, Kenneth A. Dawson, Wolfgang J. Parak, Zeljka Krpetic, Marco P. Monopoli Jan 2021

In Depth Characterisation Of The Biomolecular Coronas Of Polymer Coated Inorganic Nanoparticles With Differential Centrifugal Sedimentation, André Perez-Potti, Hender Lopez, Beatriz Pelaz, Abuelmagd Abdelmonem, Mahmoud G. Soliman, Ingmar Schoen, Philip M. Kelly, Kenneth A. Dawson, Wolfgang J. Parak, Zeljka Krpetic, Marco P. Monopoli

Articles

Advances in nanofabrication methods have enabled the tailoring of new strategies towards the controlled production of nanoparticles with attractive applications in healthcare. In many cases, their characterisation remains a big challenge, particularly for small-sized functional nanoparticles of 5 nm diameter or smaller, where current particle sizing techniques struggle to provide the required sensitivity and accuracy. There is a clear need for the development of new reliable characterisation approaches for the physico-chemical characterisation of nanoparticles with significant accuracy, particularly for the analysis of the particles in the presence of complex biological fluids. Herein, we show that the Differential Centrifugal Sedimentation can …


Gold/Qds-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement As A Quenching Sensor, Nader Shehata, Effat Samir, Ishac Kandas Jan 2020

Gold/Qds-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement As A Quenching Sensor, Nader Shehata, Effat Samir, Ishac Kandas

Electrical & Computer Engineering Faculty Publications

This work focuses on improving the fluorescence intensity of cerium oxide (ceria) nanoparticles (NPs) through added plasmonic nanostructures. Ceria nanoparticles are fluorescent nanostructures which can emit visible fluorescence emissions under violet excitation. Here, we investigated different added plasmonic nanostructures, such as gold nanoparticles (Au NPs) and Cadmium sulfide/selenide quantum dots (CdS/CdSe QDs), to check the enhancement of fluorescence intensity emissions caused by ceria NPs. Different plasmonic resonances of both aforementioned nanostructures have been selected to develop optical coupling with both fluorescence excitation and emission wavelengths of ceria. In addition, different additions whether in-situ or post-synthesis have been investigated. We found …


Evaluation Of The Mechanisms And Effectiveness Of Nano-Hydroxides, Wood And Dairy Manure-Derived Biochars To Remove Fluoride And Heavy Metals From Water, Anna Rose Wallace, Wenjie Sun Dr, Chunming Su Dr Dec 2019

Evaluation Of The Mechanisms And Effectiveness Of Nano-Hydroxides, Wood And Dairy Manure-Derived Biochars To Remove Fluoride And Heavy Metals From Water, Anna Rose Wallace, Wenjie Sun Dr, Chunming Su Dr

Civil and Environmental Engineering Theses and Dissertations

The development of effective treatment processes for the removal contaminants, such as fluoride and heavy metals, from polluted water have been urgently needed due to serious environmental health and safety concerns. In this dissertation, a variety of materials including various (hydro)oxide nanomaterials, biochars and surface modified biochar were studied to evaluate their effectiveness and mechanism on removing fluoride or mixed heavy metals from water.

In the Chapter 2, this study investigated the adsorptive removal of fluoride from water using various (hydro)oxide nanomaterials, focusing on ferrihydrite, hydroxyapatite (HAP) and brucite, which have the potential to be used as sorbents for surface …


Printing 3d Models For Chemistry: A Step-By-Step Open-Source Guide For Hobbyists, Corporate Professionals, And Educators And Students In K-12 And Higher Education, Elisabeth Grace Billman-Benveniste, Jacob Franz, Loredana Valenzano-Slough Sep 2019

Printing 3d Models For Chemistry: A Step-By-Step Open-Source Guide For Hobbyists, Corporate Professionals, And Educators And Students In K-12 And Higher Education, Elisabeth Grace Billman-Benveniste, Jacob Franz, Loredana Valenzano-Slough

Open Access Books

3D-printing is a relatively inexpensive additive manufacturing method used to create tangible objects. As a relatively new technology, the true capability of 3D-printing has not yet been fully exploited, especially in academic and research/teaching settings. Through this work, 3D-printing in a classroom and research environment is employed as a tool for creation of fully customizable, three-dimensional molecular models and for the visualization of theoretical abstract concepts.


Synthesis And Adsorption Experiments With Metal-Organic Frameworks For High School And Undergraduate Laboratory Settings, Kate Holley Jan 2019

Synthesis And Adsorption Experiments With Metal-Organic Frameworks For High School And Undergraduate Laboratory Settings, Kate Holley

Legacy Theses & Dissertations (2009 - 2024)

Seven experiments are described and outlined here that introduce high school and undergraduate students to metal–organic frameworks (MOFs) and their applications. The experiments were designed to be completed with basic laboratory equipment and supplies and without the use of expensive characterization instruments, simulating typical high school chemistry laboratory conditions. Students synthesized two well-known MOFs, HKUST-1 and aluminum fumarate, using simple, safe, and rapid methods (fast enough to be performed within the time constrains of a typical high school class). Students then use their synthesized MOFs to explore their inherent sorption properties. In one set of experiments, the synthesized MOFs are …


Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong Jun 2018

Feco2o4 As An Anode Material For Lithium Ion Batteries, Chelsea Wong

The International Student Science Fair 2018

Lithium ion batteries (LIBs) are commonly found in many portable electronic appliances due to their ability to be rechargeable. Currently, commercial anodes in Li-ion batteries (graphite) have a theoretical capacity of around 372 mAh/g, while FeCo2O4 that will be investigated as the anode material has a theoretical capacity of 901.985mAh/g, more than double of the current commercial anode’s capacity. Earlier work done by Sharma et al also showed that FeCo2O4 has a very promising initial capacity of 827mAh/g. As such, the engineering goal is to produce a battery that will have a higher capacity than the current commercial Li-ion batteries …


Glucosamine From Hydrolysis Of 3d Printing Chitosan For Osteoarthritis Treatment, Ruj Dansriboon, Laphon Premcharoen Jun 2018

Glucosamine From Hydrolysis Of 3d Printing Chitosan For Osteoarthritis Treatment, Ruj Dansriboon, Laphon Premcharoen

The International Student Science Fair 2018

This project aims to introduce a new way for osteoarthritis treatment which is expected to increase in the future. Glucosamine is the main subject for a treatment, which can be derived by hydrolyzing chitosan. This project also includes extraction of chitosan from shrimp waste to make a worthy use of food waste from industry. In this project, 3D printer is applied to print chitosan gel since 3D printing is adjustable to form various shapes of the gel.

The research process begins with the extraction of chitosan from shrimp shells. For the next step, the percent of deacetylation of chitosan was …


An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn Jun 2018

An Entirely New Molecular Glue For Mof Using Unusual Structural Transformation Of A Coordination Polymer, Sukwoo Jung, Hangyeol Kim, Junseok Ahn

The International Student Science Fair 2018

In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in …


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble and …


3d Printable Optomechanical Cage System With Enclosure, Brandon Winters, David Shepler Apr 2018

3d Printable Optomechanical Cage System With Enclosure, Brandon Winters, David Shepler

Chemistry Faculty Publications

The advent of the computer-age in the mid to late 20th century brought the development of sophisticated scientific equipment for myriad chemical analyses. The field of spectroscopy alone has seen significant advances in data collection, processing, and analysis due principally to the incorporation of microprocessors. While it is clear computers have revolutionized the field of instrumental chemical analysis their impact is pervasive through every segment of our lives. From word processing, data management, and Computer Aided Design in our work environments to social media, crowd funding, and digital news at home, technology is everywhere. This work seeks to incorporate the …


Phytoforensics: Trees As Bioindicators Of Potential Indoor Exposure Via Vapor Intrusion, Jordan L. Wilson, V. A. Samaranayake, Matt A. Limmer, Joel Gerard Burken Feb 2018

Phytoforensics: Trees As Bioindicators Of Potential Indoor Exposure Via Vapor Intrusion, Jordan L. Wilson, V. A. Samaranayake, Matt A. Limmer, Joel Gerard Burken

Mathematics and Statistics Faculty Research & Creative Works

Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at …


Development And Implementation Of Problem-Based Chemistry Experiments For Engineering Students In A Multi-Disciplinary Course, Tiffany Hesser, Stephanie R. Bunyea Jun 2016

Development And Implementation Of Problem-Based Chemistry Experiments For Engineering Students In A Multi-Disciplinary Course, Tiffany Hesser, Stephanie R. Bunyea

Chemistry and Chemical Engineering Faculty Publications

This paper will describe the implementation and continuing development of five problem based laboratory experiments in a general chemistry course designed specifically for multiple disciplines of engineering students at the University of New Haven. The Problem Based Laboratory Experiments (PBLE) were developed to provide students with the opportunity to perform and develop experimental procedures working in interdisciplinary teams, while achieving a greater understanding of the role of chemistry in engineering fields. In each PBLE, students first complete a traditional chemistry experiment to gain an understanding of the chemical concepts and to become familiar with executing a written procedure with a …


Characterization Of Biochars Produced From Peanut Hulls And Pine Wood With Different Pyrolysis Conditions, James W. Lee, Bob Hawkins, Michelle K. Kidder, Barbara R. Evans, A. C. Buchanan, Danny Day Jan 2016

Characterization Of Biochars Produced From Peanut Hulls And Pine Wood With Different Pyrolysis Conditions, James W. Lee, Bob Hawkins, Michelle K. Kidder, Barbara R. Evans, A. C. Buchanan, Danny Day

Chemistry & Biochemistry Faculty Publications

Background

Application of modern biomass pyrolysis methods for production of biofuels and biochar is potentially a significant approach to enable global carbon capture and sequestration. To realize this potential, it is essential to develop methods that produce biochar with the characteristics needed for effective soil amendment.

Methods

Biochar materials were produced from peanut hulls and pine wood with different pyrolysis conditions, then characterized by cation exchange (CEC) capacity assays, nitrogen adsorption–desorption isotherm measurements, micro/nanostructural imaging, infrared spectra and elemental analyses.

Results

Under a standard assay condition of pH 8.5, the CEC values of the peanut hull-derived biochar materials, ranging from …


Modeling Of Gas Production From Shale Reservoirs Considering Multiple Transport Mechanisms, Chaohua Guo, Mingzhen Wei, Hong Liu Dec 2015

Modeling Of Gas Production From Shale Reservoirs Considering Multiple Transport Mechanisms, Chaohua Guo, Mingzhen Wei, Hong Liu

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when …


Interference-Free Gas-Phase Thermometry At Elevated Pressure Using Hybrid Femtosecond/Picosecond Rotational Coherent Anti- Stokes Raman Scattering, Joseph D. Miller, Chloe Elizabeth Dedic, Sukesh Roy, James R. Gord, Terrence R. Meyer Nov 2015

Interference-Free Gas-Phase Thermometry At Elevated Pressure Using Hybrid Femtosecond/Picosecond Rotational Coherent Anti- Stokes Raman Scattering, Joseph D. Miller, Chloe Elizabeth Dedic, Sukesh Roy, James R. Gord, Terrence R. Meyer

Terrence R Meyer

Rotational-level-dependent dephasing rates and nonresonant background can lead to significant uncertainties in coherent anti-Stokes Raman scattering (CARS) thermometry under high-pressure, lowtemperature conditions if the gas composition is unknown. Hybrid femtosecond/picosecond rotational CARS is employed to minimize or eliminate the influence of collisions and nonresonant background for accurate, frequency-domain thermometry at elevated pressure. The ability to ignore these interferences and achieve thermometric errors of <5% is demonstrated for N2 and O2 at pressures up to 15 atm. Beyond 15 atm, the effects of collisions cannot be ignored but can be minimized using a short probe delay (~6.5 ps) after Raman excitation, …


Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin Aug 2015

Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin

Master's Theses

Organic thin films can be readily mass-produced through solution-based fabrication methods including ink-printing and solution-casting because their light weight, flexibility, and inexpensive sources. Their applications range from organic field-effect transistors (OFET), organic solar cells (OSC), to organic light emitting diodes (OLEDs). Compared with pure component films, binary organic thin films (BOTF) allows for novel characteristics and specialized features to handle more demanding tasks. Due to the complex intermolecular interactions in BOTF, various microscopic phases with different morphological and electronic properties may be formed and this information is difficult to extract through conventional bulk measurements.

Organic thin films can be readily …


Combinatorial Computational Chemistry Approach To The Design Of Metal Oxide Electronics Materials, B. Rodion, Salai Ammal, Y. Inaba, Y. Oumi, S. Takami, M. Kubo, A. Miyamoto, M. Kawasaki, M. Yoshimoto, H. Koinuma May 2015

Combinatorial Computational Chemistry Approach To The Design Of Metal Oxide Electronics Materials, B. Rodion, Salai Ammal, Y. Inaba, Y. Oumi, S. Takami, M. Kubo, A. Miyamoto, M. Kawasaki, M. Yoshimoto, H. Koinuma

Salai C. Ammal

Combinatorial chemistry has been developed as an experimental method where it is possible to synthesize hundreds of samples all at once and examine their properties. Recently, we introduced the concept of combinatorial approach to computational chemistry for material design and proposed a new method called `a combinatorial computational chemistry'. In this approach, the effects of large number of dopants, substrates, and buffer layers on the structures, electronic states, and properties of metal oxide electronics material is estimated systematically using computer simulations techniques, in order to predict the best dopant, substrate, and buffer layer for each metal oxide electronics materials.


07. Criminal Justice, Northeastern State University Jan 2015

07. Criminal Justice, Northeastern State University

Oklahoma Research Day Abstracts

No abstract provided.


04. Botany, Northeastern State University Jan 2015

04. Botany, Northeastern State University

Oklahoma Research Day Abstracts

No abstract provided.


06. Computer Science, Northeastern State University Jan 2015

06. Computer Science, Northeastern State University

Oklahoma Research Day Abstracts

No abstract provided.


03. Biology, Northeastern State University Jan 2015

03. Biology, Northeastern State University

Oklahoma Research Day Abstracts

No abstract provided.


08. Engineering, Northeastern State University Jan 2015

08. Engineering, Northeastern State University

Oklahoma Research Day Abstracts

No abstract provided.