Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Overcoming An “Irreversible” Threshold: A 15-Year Fire Experiment, Christine H. Bielski, Rheinhardt Scholtz, Victoria Donovan, Craig R. Allen, Dirac Twidwell Jan 2021

Overcoming An “Irreversible” Threshold: A 15-Year Fire Experiment, Christine H. Bielski, Rheinhardt Scholtz, Victoria Donovan, Craig R. Allen, Dirac Twidwell

Papers in Natural Resources

A key pursuit in contemporary ecology is to differentiate regime shifts that are truly irreversible from those that are hysteretic. Many ecological regime shifts have been labeled as irreversible without exploring the full range of variability in stabilizing feedbacks that have the potential to drive an ecological regime shift back towards a desirable ecological regime. Removing fire from grasslands can drive a regime shift to juniper woodlands that cannot be reversed using typical fire frequency and intensity thresholds, and has thus been considered irreversible. This study uses a unique, long-term experimental fire landscape co-dominated by grassland and closed-canopy juniper woodland …


Metapopulation Viability Of An Endangered Shorebird Depends On Dispersal And Human-Created Habitats: Piping Plovers (Charadrius Melodus) And Prairie Rivers, Sara L. Zeigler, Daniel H. Catlin, Mary Bomberger Brown, Lauren R. Dinan, James D. Fraser, Kelsi L. Hunt, Joel G. Jorgensen Jan 2016

Metapopulation Viability Of An Endangered Shorebird Depends On Dispersal And Human-Created Habitats: Piping Plovers (Charadrius Melodus) And Prairie Rivers, Sara L. Zeigler, Daniel H. Catlin, Mary Bomberger Brown, Lauren R. Dinan, James D. Fraser, Kelsi L. Hunt, Joel G. Jorgensen

Papers in Natural Resources

Background: Many species are distributed as metapopulations in dynamic landscapes, where habitats change through space and time. Individuals locate habitat through dispersal, and the relationship between a species and landscape characteristics can have profound effects on population persistence. Despite the importance of connectivity in dynamic environments, few empirical studies have examined temporal variability in dispersal or its effect on metapopulation dynamics. In response to this knowledge gap, we studied the dispersal, demography, and viability of a metapopulation of an endangered, disturbance-dependent shorebird. We examined three subpopulations of piping plovers (Charadrius melodus) on the lower Platte and Missouri rivers …


Data-Driven Diagnostics Of Terrestrial Carbon Dynamics Over North America, Jingfeng Xiao, Scott V. Ollinger, Steve Frolking, George Hurtt, David Y. Hollinger, Kenneth J. Davis, Yude Pan, Xiaoyang Zhang, Feng Deng, Jiquan Chen, Dennis D. Baldocchi, Beverly E. Law, M. Altaf Arain, Ankur R. Desai, Andrew D. Richardson, Ge Sun, Brian Amiro, Hank Margolis, Lianhong Gu, Russell L. Scott, Peter D. Blanken, Andrew E. Suyker Jan 2014

Data-Driven Diagnostics Of Terrestrial Carbon Dynamics Over North America, Jingfeng Xiao, Scott V. Ollinger, Steve Frolking, George Hurtt, David Y. Hollinger, Kenneth J. Davis, Yude Pan, Xiaoyang Zhang, Feng Deng, Jiquan Chen, Dennis D. Baldocchi, Beverly E. Law, M. Altaf Arain, Ankur R. Desai, Andrew D. Richardson, Ge Sun, Brian Amiro, Hank Margolis, Lianhong Gu, Russell L. Scott, Peter D. Blanken, Andrew E. Suyker

Papers in Natural Resources

The exchange of carbon dioxide is a key measure of ecosystem metabolism and a critical intersection between the terrestrial biosphere and the Earth’s climate. Despite the general agreement that the terrestrial ecosystems in North America provide a sizeable carbon sink, the size and distribution of the sink remain uncertain. We use a data-driven approach to upscale eddy covariance flux observations from towers to the continental scale by integrating flux observations, meteorology, stand age,aboveground biomass, and a proxy for canopy nitrogen concentrations from AmeriFlux and Fluxnet-Canada Research Network as well as a variety of satellite data streams from the MODIS sensors. …


Flow, Nutrients, And Light Availability Influence Neotropical Epilithon Biomass And Stoichiometry, Tyler J. Kohler, Thomas N. Heatherly Ii, Rana W. El-Sabaawi, Eugenia Zandona, Michael C. Marshall, Alexander S. Flecker, Catherine M. Pringle, David N. Reznick, Steven A. Thomas Aug 2012

Flow, Nutrients, And Light Availability Influence Neotropical Epilithon Biomass And Stoichiometry, Tyler J. Kohler, Thomas N. Heatherly Ii, Rana W. El-Sabaawi, Eugenia Zandona, Michael C. Marshall, Alexander S. Flecker, Catherine M. Pringle, David N. Reznick, Steven A. Thomas

Papers in Natural Resources

Light, nutrient availability, and flow are strong factors controlling the elemental composition and biomass of epilithon in temperate stream ecosystems. However, comparatively little is known about these relationships in tropical streams. We investigated how gradients of light and nutrient availability, seasonality, and habitat influenced epilithon biomass, chlorophyll a, and nutrient ratios in montane streams of Trinidad, West Indies. We sampled 4 focal tributaries of a single river, 2 of which had canopies experimentally thinned, every other month over a 2-y period to observe temporal dynamics and light effects on epilithon. We also sampled 18 sites across Trinidad’s Northern Range Mountains …


Assessing Net Ecosystem Carbon Exchange Of U.S. Terrestrial Ecosystems By Integrating Eddy Covariance Flux Measurements And Satellite Observations, Jingfeng Xiao, Qianlai Zhuang, Beverly E. Law, Dennis D. Baldocchi, Jiquan Chen, Andrew D. Richardson, Jerry M. Melillo, Kenneth J. Davis, David Y. Hollinger, Sonia Wharton, Ram Oren, Asko Noormets, Marc L. Fischer, Shashi Verma, David R. Cook, Ge Sun, Steve Mcnulty, Steven C. Wofsy, Paul V. Bolstad, Sean P. Burns, Peter S. Curtis, Bert G. Drake, Matthias Falk, David R. Foster, Lianhong Gu, Julian L. Hadley, Gabriel G. Katul, Marcy Litvak, Siyan Ma, Timothy A. Martin, Roser Matamala, Tilden P. Meyers, Russell K. Monson, J. William Munger, Walter C. Oechel, U. Kyaw Tha Paw, Hans Peter Schmid, Russell L. Scott, Gregory Starr, Andrew E. Suyker, Margaret S. Torn Jan 2011

Assessing Net Ecosystem Carbon Exchange Of U.S. Terrestrial Ecosystems By Integrating Eddy Covariance Flux Measurements And Satellite Observations, Jingfeng Xiao, Qianlai Zhuang, Beverly E. Law, Dennis D. Baldocchi, Jiquan Chen, Andrew D. Richardson, Jerry M. Melillo, Kenneth J. Davis, David Y. Hollinger, Sonia Wharton, Ram Oren, Asko Noormets, Marc L. Fischer, Shashi Verma, David R. Cook, Ge Sun, Steve Mcnulty, Steven C. Wofsy, Paul V. Bolstad, Sean P. Burns, Peter S. Curtis, Bert G. Drake, Matthias Falk, David R. Foster, Lianhong Gu, Julian L. Hadley, Gabriel G. Katul, Marcy Litvak, Siyan Ma, Timothy A. Martin, Roser Matamala, Tilden P. Meyers, Russell K. Monson, J. William Munger, Walter C. Oechel, U. Kyaw Tha Paw, Hans Peter Schmid, Russell L. Scott, Gregory Starr, Andrew E. Suyker, Margaret S. Torn

Papers in Natural Resources

More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr−1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and …