Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 126

Full-Text Articles in Physical Sciences and Mathematics

Quantification Of Dye Degradation On Titanium Dioxide-Based Membranes, Elizabeth Carol Wood Dec 2023

Quantification Of Dye Degradation On Titanium Dioxide-Based Membranes, Elizabeth Carol Wood

Graduate Theses and Dissertations

The purpose of this study was to examine the dye degradation on the titanium dioxide (TiO2)-based membranes. While many studies have shown photocatalytic degradation of dye on TiO2 in solution, few studies have been reported on the solid TiO2 substrate. In this work, a new method is developed to quantify the dye degradation on TiO2-based membranes. A hydrothermal method is used to synthesize the photocatalytic TiO2 nanofibers; vacuum filtration is applied to fabricate a self-assembled membrane. Silver is incorporated into the nanofibers through in situ reduction before vacuum filtration to fabricate Ag/TiO2 membrane in an attempt to red shift the …


Poly(Ionic Liquid)S For Magnetic, Ionic, And Electrical Stimuli-Responsive Applications, Kayla Ann Foley Aug 2023

Poly(Ionic Liquid)S For Magnetic, Ionic, And Electrical Stimuli-Responsive Applications, Kayla Ann Foley

Graduate Theses and Dissertations

Poly(ionic liquid)s (PILs) are a fascinating subclass of strong polyelectrolytes formed from polymerizable ionic liquids. As a result of their unique properties and counterion exchangeability, PILs can exhibit conformation structure or material property changes in response to external stimuli such as changes in pH/ionic environment, magnetic fields, and electric potentials. In Chapter 1, a comprehensive review of PILs design as well as their stimuli-responsive behavior is provided. Additional motivation for each dissertation chapter is also discussed. In Chapter 2, magnetically responsive PILs (MPILs) are developed from complexing paramagnetic salts with a random PIL copolymer containing a metal-coordinating co-monomer, acrylamide. A …


Dpd Guided Insight On The Formation Process Of Polyethersulfone Membranes By Nonsolvent Induced Phase Separation And The Effects Of Additives, Eric Ledieu May 2023

Dpd Guided Insight On The Formation Process Of Polyethersulfone Membranes By Nonsolvent Induced Phase Separation And The Effects Of Additives, Eric Ledieu

Graduate Theses and Dissertations

Dissipative particle dynamics (DPD), a coarse grain simulation method, was applied to the membrane formation process of non-solvent induced phase separation (NIPS) to gain further insight on the mechanism of certain variables and how they affect the final morphology. NIPS involves two solutions, an organic polymer dissolved in an organic solvent colloquially called the dope and an aqueous coagulation bath, brought into contact with one another. The solvents then mix, causing the polymer to fall out of solution as an asymmetric membrane with a dense surface layer and a more open subsurface layer in response to the decreasing solubility. Polyethersulfone …


An Experimental Study Into Tholin's Solubility With Liquid Hydrocarbons On Titan, Katherine Dzurilla May 2023

An Experimental Study Into Tholin's Solubility With Liquid Hydrocarbons On Titan, Katherine Dzurilla

Graduate Theses and Dissertations

Titan’s production of organics in its atmosphere and the liquid hydrocarbon lakes present on its surface make it a prime target for astrobiologists. Many previous studies on laboratory analogs of these organics, called "tholins", have found amino acids, nitriles, and other building blocks necessary for life. The potential solubility of tholins in the lakes of Titan presents an opportunity to create physical and chemical changes within the organics. While the lakes of Titan are primarily comprised of nonpolar compounds (methane and ethane), many predict that very small amounts of polar hydrocarbons are also present. To better understand these processes, researchers …


First-Principles Study Of Doping Effects On Ferroelectricity And On Rashba Spin Splitting, Zegnet Yimer Muhammed Dec 2022

First-Principles Study Of Doping Effects On Ferroelectricity And On Rashba Spin Splitting, Zegnet Yimer Muhammed

Graduate Theses and Dissertations

In this dissertation, we have thoroughly studied the effect of chemical and charge dopingon ferroelectrics (PbTiO3 and BaTiO3) and Rashba type semiconductor (BiTeI). In the first project, We investigate the polar instability and soft modes in electron-doped PbTiO3 using linear-response density functional calculations. Because, metallicity and ferroelectric-like polar distortion are mutually non-compatible, and their coexistence in the same system is an intriguing subject of fundamental interest in the field of structure phase transition. However, it is unclear what mechanism may extend the limit of metallicity that allows polar distortion. We find that ferroelectric instability can remarkably sustain up to an …


Visible Light-Assisted Deconstruction/Refunctionalization Of Strained And Unstrained N-Cycloalkylanilines, Elvis Duah Boateng Dec 2022

Visible Light-Assisted Deconstruction/Refunctionalization Of Strained And Unstrained N-Cycloalkylanilines, Elvis Duah Boateng

Graduate Theses and Dissertations

The exploitation of ring strain as a driving force to facilitate chemical reactions is a well-appreciated principle in organic chemistry. Of the strained carbocycles frequently explored in this respect, cyclopropane ring systems have drawn considerably more interest among synthetic chemists than their homolog, the cyclobutane ring systems, even though the strain energy of cyclobutane (26.7 kcal/mol) is similar to that of cyclopropane (27.5 kcal/mol). We have previously developed a [4+2] annulation reaction for the synthesis of aniline-substituted six-membered carbocycles under photoredox catalysis via the oxidative cleavage of N-cyclobutylanilines. The key reaction involved in this method is a ring-opening process of …


Hierarchical Structure And Material Integration For Electrocatalytic Co2 Reduction, Hamed Mehrabi Dec 2022

Hierarchical Structure And Material Integration For Electrocatalytic Co2 Reduction, Hamed Mehrabi

Graduate Theses and Dissertations

CO2 released by the combustion of fossil fuels is driving significant changes to the earth’sclimate. The natural cycle for removing CO2 from the atmosphere, namely photosynthesis, cannot keep up with the rate at which it is being added. Developing engineering approaches to remove CO2 from the atmosphere is becoming essential to reduce these effects. Removal leads to further issues of carbon sequestration and favorable CO2 reuse strategies, including the electrochemical transformation of recovered CO2 to useful products such as fuels and materials. Copper is an important electrocatalyst for the CO2 reduction reaction (CO2RR) because of its unique capability for producing …


A Study On Interactions Between Metal-Organic Frameworks And Biological Materials, Josh Phipps Dec 2022

A Study On Interactions Between Metal-Organic Frameworks And Biological Materials, Josh Phipps

Graduate Theses and Dissertations

Metal-organic frameworks or MOFs are an extremely useful tool in many areas of applications. Their popularity in recent years has arisen from their high efficiency in catalytic chemical reactions. This is made possible due to their porous interior and the ability of the MOFs components to be functionalized. These same traits make MOFs excellent for use in protein encapsulation or immobilization and have the potential to become excellent drug carriers. Their development in this utilization has been limited dramatically compared to MOFs chemical applications. This is due in part to the nature of biological processes taking longer to study, but …


The Binding Of The Micronutrient Transition Metals To The Alkylation Products Of Chemical Warfare Agent, Sulfur Mustard, And Thiols, Potentially Giving New Understanding To Physiological Effects Of Exposure And Increased Toxicity, Colin O'Donnell Dec 2022

The Binding Of The Micronutrient Transition Metals To The Alkylation Products Of Chemical Warfare Agent, Sulfur Mustard, And Thiols, Potentially Giving New Understanding To Physiological Effects Of Exposure And Increased Toxicity, Colin O'Donnell

Graduate Theses and Dissertations

Model compounds, 3,6,9-trithaiundecane-1,11-dicarboxylic acid (TTDPA), 2,5,8-trithianonane-1,9-dicarboxylic acid (TTDAA), and 1,11-diamide-3,6,9-trithiaundecane (TTDAce), closely related to the adducts formed by cysteine alkylation of the chemical weapon, sulfur mustard, were synthesized. It is shown that TTDPA forms complexes with key metal micronutrients: copper, nickel, cobalt, manganese, and zinc. Though the strength of binding to TTDPA varies, the complexes in many cases precipitate from solution. All metals produced a visible precipitate upon interaction with TTDPA under the conditions tested, however only Cu2+, Mn2+, and Zn2+ produced enough to be measured. The mass of formed precipitate seemed to peak at an equimolar ratio of TTDPA …


Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa Dec 2022

Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa

Graduate Theses and Dissertations

Researchers in chemistry and biology often utilize computer simulations, in conjunction with experimental data, to model and predict the structures, energies, kinetics, processes, and functions of the systems that are their focus of study, ranging from single molecules to whole viruses. Here, we use molecular dynamics (MD) techniques to gain a deeper understanding of biomolecular processes in biology and biotechnology-oriented applications. Using a mixture of equilibrium and non-equilibrium MD simulations, this work describes the insertion process of YidC at the atomic level. In order to better comprehend the insertion process, several docking models of YidC-Pf3 in the lipid bilayer were …


Catalytic Activity Of Tungsten-Dioxo And Tungsten-Diimido Complexes, Kayla Denike Aug 2022

Catalytic Activity Of Tungsten-Dioxo And Tungsten-Diimido Complexes, Kayla Denike

Graduate Theses and Dissertations

Due to the significant decline in the availability of petrochemical resources and the increasing demand for the useful olefin mixtures extracted from oil, a sustainable and efficient alternative to these materials has become vital. Fortunately, renewable biomass derived materials may serve as a sustainable solution to the limited resources problem. Molecules derived from the degradation of biomasses are highly oxygenated and highly functionalized. Developing processes to efficiently defunctionalize these oxygen-rich materials will lead to potential up-conversion to carbon chemicals. Homogeneous catalytic deoxygenation processes present an opportunity to access valuable carbon commodity chemicals from biomass derived polyols. This dissertation details the …


Hierarchically Structured Photoelectrodes Via Atomic Layer Deposition, Justin Rowan Reed Demoulpied Aug 2022

Hierarchically Structured Photoelectrodes Via Atomic Layer Deposition, Justin Rowan Reed Demoulpied

Graduate Theses and Dissertations

In the search for a sustainable method to meet increasing energy needs, solar energy emerges as an underutilized, plentiful resource. Solar intermittency and requirements for transportation necessitate storing solar energy in the form of chemical bonds via artificial photosynthesis. Photoelectrochemical (PEC) water splitting generates hydrogen fuel from solar energy and water. A semiconducting material that successfully meets the complex requirements for building an industrially scalable PEC device has yet to emerge. This is leading to a reevaluation of materials previously overlooked within PEC research, mainly materials with limitations such as minimal charge carrier mobility and propensity to corrosion under illumination …


Colloidal Monolayers For Concentration Light In Ultra-Thin Semiconductor Layers, Rachel Cherry May 2022

Colloidal Monolayers For Concentration Light In Ultra-Thin Semiconductor Layers, Rachel Cherry

Graduate Theses and Dissertations

Thin film semiconductors are used as photoconductive absorber layers for the development of broadband terahertz generation. Using a femtosecond laser pulse, the generation of a transient increase in the conductivity occurs by photoexciting conduction band electrons in the semiconductor. These thermalize through the emission of terahertz radiation. The route to terahertz generation is not particularly efficient as significant losses come from the absorption in the substrate that is beneath the photoconductive antenna layer. This work explores the application of hexagonally close-packed monolayers of chemically synthesized nanospheres as a potential light concentration method for ultra-thin films of GaAs and black phosphorus …


Fabrication Of Mof Films Of Uio Or Pcn Type Through Layer-By-Layer Molecular Deposition As Well As Bulk Deposition For Catalytic Applications, John Ozdemir May 2022

Fabrication Of Mof Films Of Uio Or Pcn Type Through Layer-By-Layer Molecular Deposition As Well As Bulk Deposition For Catalytic Applications, John Ozdemir

Graduate Theses and Dissertations

Metal-organic frameworks (MOFs) are crystalline, porous materials comprised of symmetric organic linkers coordinated to positively charged metal atoms or metal oxide nodes. This dissertation uses strategies in crystal engineering to advance the study of functional MOFs with emphasis on thin film deposition. The first chapter of this dissertation will introduce the field of reticular chemistry to the reader and describe synthetic efforts to develop useful building blocks for MOF materials: namely porphyrin macrocycles and carboxylate capped zirconium-oxo and hafnium-oxo clusters. The building blocks for MOFs developed in the first chapter will be employed in the second and third chapters through …


Introduction Of Human Acidic Fibroblast Growth Factor (Fgf1) Variant With Increased Stability And Bioactivity, Azadeh Tavousi Tabatabaei May 2022

Introduction Of Human Acidic Fibroblast Growth Factor (Fgf1) Variant With Increased Stability And Bioactivity, Azadeh Tavousi Tabatabaei

Graduate Theses and Dissertations

Human acidic Fibroblast Growth Factor 1 (FGF-1) involves in a broad spectrum of biological processes, including cell growth, proliferation, differentiation, migration, angiogenesis, wound healing, and embryonic development. hFGF1 non-selectively binds to cell surface hFGF receptor isoforms to elicit these cell-signaling processes. Since hFGF1 plays a significant role in tissue repair activity, that is a prime candidate for novel wound healing therapeutics. However, hFGF1 has been found to unfold near physiological temperature due to a strong electrostatic repulsion created by a dense cluster of positively charged amino acids near the c-terminus. The problem not only leads to proteolytic degradation of the …


Understanding Interfacial Reactions Initiating On Electrode Materials For Energy Storage Technologies, Jingnan Li May 2022

Understanding Interfacial Reactions Initiating On Electrode Materials For Energy Storage Technologies, Jingnan Li

Graduate Theses and Dissertations

Since the first generation of lithium-ion batteries featured lithium cobalt oxide cathode and carbon anode commercialized in the 1990s, the high-capacity materials with lower cost are in demand to further increase the battery energy density. Lithium metal and silicon anode are promising high-capacity anode materials to achieve next-generation lithium batteries. However, both the materials actively react in electrolytes and suffer from dramatic volume change. Therefore, a reliable passivation layer at the electrolyte/electrode interphase (i.e., solid electrolyte interphase, or “SEI”) is required to support the long-term cycling of both materials. Cetrimonium hydro fluoride (CTAHF2) has been proposed and synthesized as an …


Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki Dec 2021

Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki

Graduate Theses and Dissertations

Developing methodologies to control the architecture of nanoparticles (NPs) at the atomic level prevents their inhomogeneity and leads to a variety of expected functions. Rationally designed nanoparticles can either be programmed or crystallized structures into pre-determined structures achieving tunable particle pore size and physiochemistry. In this dissertation, two broad classes of multifunctional nanoparticles are developed, metal-organic frameworks and DNA-NP aggregates.

Metal-organic frameworks are a novel class of highly porous crystalline materials built from organic linkers and metal cluster-based secondary building units. However, applications in bioremediation have not been developed very well especially in applications regarding drug delivery systems (DDS). The …


Formation Of Reactive Nitrogen Species During Dichloramine Decay And Their Impact On N Nitrosodimethylamine Formation Under Drinking Water Conditions, Huong Thu Pham Dec 2021

Formation Of Reactive Nitrogen Species During Dichloramine Decay And Their Impact On N Nitrosodimethylamine Formation Under Drinking Water Conditions, Huong Thu Pham

Graduate Theses and Dissertations

NDMA occurrence and formation pathways in drinking water systems are reviewed and NDMA yields are compared on the basis of disinfectant type, water chemistry, and precursor category. In chloramination, despite monochloramine being the predominant species between pH 7-9, evidence suggests that dichloramine is the primary species involved in NDMA formation. This is somewhat confounding as NDMA yields are maximal at pH 9, yet at pH 9 dichloramine decays faster than it forms and hence is present at trace levels; additionally, the proposed mechanism involves a spin-forbidden incorporation of dissolved oxygen as a triplet, which is presumably kinetically slow. This review …


Effects Of Localized Oxygen Production By Electrolysis On The First-Generation Glucose Sensor Response, Nandita Halder Dec 2021

Effects Of Localized Oxygen Production By Electrolysis On The First-Generation Glucose Sensor Response, Nandita Halder

Graduate Theses and Dissertations

Glucose sensors are very important for detecting blood glucose both in vitro and in vivo. First-generation glucose biosensors were based on the glucose oxidase (GOx) enzyme using molecular oxygen as the electron acceptor and therefore oxygen dependent. Unfortunately for in-vivo work, oxygen in the body is variable and limited. Alternative approaches to overcome the oxygen dependency came with their own limitations. The widely used and commercially available ex-vivo glucose test strip uses a mediator in place of oxygen to free it from oxygen dependency. The mediator-based technology, in most cases cannot be transferred to in vivo applications due to the …


Engineering Fluorescently Labeled Human Fibroblast Growth Factor One Mutants And Characterizing Their Photophysics Properties Towards Designing Fret Assays, Mamello Mohale Dec 2021

Engineering Fluorescently Labeled Human Fibroblast Growth Factor One Mutants And Characterizing Their Photophysics Properties Towards Designing Fret Assays, Mamello Mohale

Graduate Theses and Dissertations

Human fibroblast growth factor one (hFGF1) belongs to a family of 22 FGF members produced by fibroblast cells. Cell signaling during physiological processes of angiogenesis and wound healing occurs when hFGF1 binds to its receptor (FGFR). However, when heterogenous homeostasis is not maintained, fibroblast cells exhibit excessive proliferation which can lead to a myriad of cancers. smFRET is an ultrasensitive distant dependent (1-10 nm) technique capable of resolving such heterogeneity in structural dynamics and binding affinities (Kd). Therefore, we successfully designed and characterized fluorescently labeled hFGF1 tracers which span the visible light region of the electromagnetic spectrum for use in …


Experimental And Computational Studies Of Electron Rich Alkenes, Alexa May Dec 2021

Experimental And Computational Studies Of Electron Rich Alkenes, Alexa May

Graduate Theses and Dissertations

Thermal homolysis is one of the most fundamental reactions in organic chemistry. Free radical reactions are generally initiated by light or a radical initiator to generate the first radical, which can then propagate or terminate the reaction. Direct thermal homolysis requires no chemical initiators, just an increase in temperature depending on the homolysis energy.There are few studies of direct radical homolysis in complex systems or under mild conditions. The reactions involving C-N homolysis under mild conditions are reported in Chapter 1. Though the authors do not all propose a radical mechanism, we believe they can all be explained by a …


Catalytic Activity Of Molybdenum-Dioxo Complexes, Randy Tran Dec 2021

Catalytic Activity Of Molybdenum-Dioxo Complexes, Randy Tran

Graduate Theses and Dissertations

This dissertation details the development of rationally designed dioxomolybdenum catalyst active for deoxydehydration (DODH), the net reduction of diols and polyols into alkenes and dienes. Catalyst design involved variations on dioxomolybdenum(VI) supported by a dianionic meridional pincer ligand. Rational substrate scope was explored using aliphatic diols, aromatic diols, and biomass derived diols. Various reductants were tested for ability to catalyze the reaction. The substrate specific mechanism of DODH was explored utilizing NMR and in-situ infrared spectroscopy and important rate constants and rate determining steps were found to aid in the optimization of ideal reaction conditions. Catalytic activity was observed to …


Synthesis Of Polyethylene Glycol-Based Hydrogels And Silver/Gold Nanostructures For Biomedical Applications, Isabelle Ishimwe Niyonshuti Dec 2021

Synthesis Of Polyethylene Glycol-Based Hydrogels And Silver/Gold Nanostructures For Biomedical Applications, Isabelle Ishimwe Niyonshuti

Graduate Theses and Dissertations

This work focuses on the synthesis of biocompatible polyethylene glycol (PEG)-based hydrogels, silver nanoparticles (AgNPs), and silver-gold nanocages (Ag-AuNCs) for biomedical applications. The dissertation includes two parts with Part I on the work of PEG-based hydrogel for wound healing applications and Part II on the work of Ag/Au nanostructures for antimicrobial applications. Part I studies PEG-based hydrogel for the delivery of fibroblast growth factors (FGFs) for wound healing applications, aiming to overcome the challenge of designing hydrogels capable of the sustained release of bioactive FGFs. This research develops new biocompatible anionic injectable hydrogel formulations based on Poly (Oligo Ethylene Glycol …


Design, Synthesis, And Catalytic Application Of Crystalline Porous Nanomaterials, Zainab Abdullah Almansaf Dec 2021

Design, Synthesis, And Catalytic Application Of Crystalline Porous Nanomaterials, Zainab Abdullah Almansaf

Graduate Theses and Dissertations

Chapter 1: COFs (covalent organic frameworks) are a new type of microporous crystalline polymer connected by organic units via strong covalent bonds. Due to their well-defined crystalline structures and excellent chemical and thermal stabilities, COF materials are considered promising candidates in applications such as gas adsorption, catalysis, and energy storage.Chapter 2: A new covalent organic framework (COF) based on imine bonds was assembled from 2-(4-formylphenyl)-5-formylpyridine and 1,3,6,8-tetrakis(4-aminophenyl)pyrene, which showed an interesting dual-pore structure with high crystallinity. Postmetallation of the COF with Pt occurred selectively at the N donor (imine and pyridyl) in the larger pores. The metalated COF served as …


Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere Jul 2021

Phase-Field Modeling Of The Polymer Membrane Formation Process For Micro- And Ultra-Filtration, Michael Rosario Cervellere

Graduate Theses and Dissertations

Porous polymer membrane filters are widely used in separation and filtration process. Micro- and ultra-filtration membranes are commonly used in biopharmaceutical applications such as filtering viruses and separating proteins from a carrier solution. The formation of these membrane filters via phase inversion is a complex and interconnected process where varying casting conditions can have a wide variety of effects on the final membrane morphol- ogy. Tailoring membrane filters for specific performance characteristics is a tedious and time consuming process. The time and length scales of membrane formation make it extremely difficult to experimentally observe membrane formation. Modeling the membrane formation …


Investigation Of Factors Influencing Recombination Versus Disproportionation Of Complex Radicals Formed By C-N Homolysis Of Breslow Type Intermediates And Related Compounds, Taylor Burnett Jul 2021

Investigation Of Factors Influencing Recombination Versus Disproportionation Of Complex Radicals Formed By C-N Homolysis Of Breslow Type Intermediates And Related Compounds, Taylor Burnett

Graduate Theses and Dissertations

Electron rich enamines are capable of C-N bond homolysis and subsequent recombination and/or disproportionation. It is unclear what causes these radicals to undergo recombination or disproportionation. Density Functional Theory (DFT) calculations do not provide a transition state for the recombination and disproportionation processes and therefore they cannot be used to predict the favorable reaction. Breslow intermediates formed by deprotonation of thiazolium salts and reaction with aromatic aldehydes are examples of electron rich enamines. These breslow intermediates can undergo C-N bond homolysis to form a radical pair the either recombine or disproportionate. Upon investigation of the factors influencing recombination and disproportionation, …


Electrochemical Deposition In Energy Storage Devices, Witness Atutala Martin Jul 2021

Electrochemical Deposition In Energy Storage Devices, Witness Atutala Martin

Graduate Theses and Dissertations

Metals, whether in a solid or soluble ion form, are a vital part of any electrochemical storage system. More so, Li metal is widely considered as the ideal anode because of its low density and low electrochemical potential (-3.04 V vs. the standard hydrogen electrode – SHE). However, just like most metals, it does not plate or strip evenly during cycling which can lead to cycling performance issues, short cycling lifespans, and even safety concerns brought about by dendrites that can cause internal short-circuiting within cells. This research focused on investigating the electroplating of metals in both aqueous and non-aqueous …


Microfabrication And Electrochemical Characterization Of A Novel Su-8 Probe With An Array Of Individually Addressable Electrodes Suitable For Redox Cycling Experiments In Ultra-Small Volumes, Mahsa Lotfi Marchoubeh Jul 2021

Microfabrication And Electrochemical Characterization Of A Novel Su-8 Probe With An Array Of Individually Addressable Electrodes Suitable For Redox Cycling Experiments In Ultra-Small Volumes, Mahsa Lotfi Marchoubeh

Graduate Theses and Dissertations

Redox cycling is an electrochemical technique that utilizes closely spaced generator and collector electrodes to cycle reversible redox species between their oxidative states. With advantages in signal amplification, selectivity of species based on their electrochemical reaction mechanism, and limited or no background subtraction, this technique is well suited for selective detection of important electrochemically active molecules such as dopamine at basal or slowly changing levels.

Miniaturized medical devices have become an area of great interest for measurement of chemicals in limited volumes with low concentrations or in sensitive tissues. A probe on a polymeric SU-8 substrate with suitable dimensions and …


Electrochemical Oxidation Of Individual Silver Nanoparticles: Exploring The Effect Of Particle Shape, Capping Ligand, Electrolyte, And Potential On The Signal, Jazlynn Sikes May 2021

Electrochemical Oxidation Of Individual Silver Nanoparticles: Exploring The Effect Of Particle Shape, Capping Ligand, Electrolyte, And Potential On The Signal, Jazlynn Sikes

Graduate Theses and Dissertations

Nanomaterials have revolutionized science and technology. Their unique properties can be exploited, and nanoparticles are being used as catalysts, antimicrobials, drug delivery vehicles, sensors, and more. However, the fundamental properties of nanomaterials and their interactions with their surrounding environments are still poorly understood. In this work, a single-particle approach was used to observe the effects of capping ligand, surrounding solution, and particle shape on the oxidative process to gain deeper understanding of silver nanoparticle properties. When allowed the opportunity, the particles will adsorb to the electrode surface then oxidize in rapid succession upon electrode activation, regardless of capping ligand as …


Biochemical Characterization Of Small Molecule Inhibitor Binding On A Ras Related Gtpase And Its Effector Interactions, Djamali Muhoza May 2021

Biochemical Characterization Of Small Molecule Inhibitor Binding On A Ras Related Gtpase And Its Effector Interactions, Djamali Muhoza

Graduate Theses and Dissertations

The Ras superfamily of GTPases has 167 proteins that are involved in various cellular processes such as proliferation, transformation, migration, and inhibition of cell death. Mutations, abnormal expression, and function of these proteins are observed in many diseases, including several forms of cancer. Even though these GTPases were among the first discovered oncogenes, no successful Ras drug candidate has successfully passed clinical trials. Drugs targeting these proteins have failed mainly because of the complexity of their regulation, their high affinity to GTP, and their structure’s dynamic nature. Recently, novel promising targeting approaches have renewed interest in the Ras drug discovery …