Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 89

Full-Text Articles in Physical Sciences and Mathematics

Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha Feb 2023

Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha

Faculty Publications

The rapidly increasing number of drones in the national airspace, including those for recreational and commercial applications, has raised concerns regarding misuse. Autonomous drone detection systems offer a probable solution to overcoming the issue of potential drone misuse, such as drug smuggling, violating people’s privacy, etc. Detecting drones can be difficult, due to similar objects in the sky, such as airplanes and birds. In addition, automated drone detection systems need to be trained with ample amounts of data to provide high accuracy. Real-time detection is also necessary, but this requires highly configured devices such as a graphical processing unit (GPU). …


Quantifying Dds-Cerberus Network Control Overhead, Andrew T. Park, Nathaniel R. Peck, Richard Dill, Douglas D. Hodson, Michael R. Grimaila, Wayne C. Henry Sep 2022

Quantifying Dds-Cerberus Network Control Overhead, Andrew T. Park, Nathaniel R. Peck, Richard Dill, Douglas D. Hodson, Michael R. Grimaila, Wayne C. Henry

Faculty Publications

Securing distributed device communication is critical because the private industry and the military depend on these resources. One area that adversaries target is the middleware, which is the medium that connects different systems. This paper evaluates a novel security layer, DDS-Cerberus (DDS-C), that protects in-transit data and improves communication efficiency on data-first distribution systems. This research contributes a distributed robotics operating system testbed and designs a multifactorial performance-based experiment to evaluate DDS-C efficiency and security by assessing total packet traffic generated in a robotics network. The performance experiment follows a 2:1 publisher to subscriber node ratio, varying the number of …


A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela Jul 2022

A Monte Carlo Framework For Incremental Improvement Of Simulation Fidelity, Damian Lyons, James Finocchiaro, Misha Novitsky, Chris Korpela

Faculty Publications

Robot software developed in simulation often does not be- have as expected when deployed because the simulation does not sufficiently represent reality - this is sometimes called the `reality gap' problem. We propose a novel algorithm to address the reality gap by injecting real-world experience into the simulation. It is assumed that the robot program (control policy) is developed using simulation, but subsequently deployed on a real system, and that the program includes a performance objective monitor procedure with scalar output. The proposed approach collects simulation and real world observations and builds conditional probability functions. These are used to generate …


Visual Homing For Robot Teams: Do You See What I See?, Damian Lyons, Noah Petzinger Apr 2022

Visual Homing For Robot Teams: Do You See What I See?, Damian Lyons, Noah Petzinger

Faculty Publications

Visual homing is a lightweight approach to visual navigation which does not require GPS. It is very attractive for robot platforms with a low computational capacity. However, a limitation is that the stored home location must be initially within the field of view of the robot. Motivated by the increasing ubiquity of camera information we propose to address this line-of-sight limitation by leveraging camera information from other robots and fixed cameras. To home to a location that is not initially within view, a robot must be able to identify a common visual landmark with another robot that can be used …


Effect Of Connection State & Transport/Application Protocol On The Machine Learning Outlier Detection Of Network Intrusions, George Yuchi [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals Jan 2022

Effect Of Connection State & Transport/Application Protocol On The Machine Learning Outlier Detection Of Network Intrusions, George Yuchi [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals

Faculty Publications

The majority of cyber infiltration & exfiltration intrusions leave a network footprint, and due to the multi-faceted nature of detecting network intrusions, it is often difficult to detect. In this work a Zeek-processed PCAP dataset containing the metadata of 36,667 network packets was modeled with several machine learning algorithms to classify normal vs. anomalous network activity. Principal component analysis with a 10% contamination factor was used to identify anomalous behavior. Models were created using recursive feature elimination on logistic regression and XGBClassifier algorithms, and also using Bayesian and bandit optimization of neural network hyperparameters. These models were trained on a …


Traffic Collision Avoidance System: False Injection Viability, John Hannah, Robert F. Mills, Richard A. Dill, Douglas D. Hodson Nov 2021

Traffic Collision Avoidance System: False Injection Viability, John Hannah, Robert F. Mills, Richard A. Dill, Douglas D. Hodson

Faculty Publications

Safety is a simple concept but an abstract task, specifically with aircraft. One critical safety system, the Traffic Collision Avoidance System II (TCAS), protects against mid-air collisions by predicting the course of other aircraft, determining the possibility of collision, and issuing a resolution advisory for avoidance. Previous research to identify vulnerabilities associated with TCAS’s communication processes discovered that a false injection attack presents the most comprehensive risk to veritable trust in TCAS, allowing for a mid-air collision. This research explores the viability of successfully executing a false injection attack against a target aircraft, triggering a resolution advisory. Monetary constraints precluded …


A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak Sep 2020

A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak

Faculty Publications

Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas. The design of robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, an UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. The three distinct types of soils are selected with sand and clay contents ranging from $13\%$ to $86\%$ and $3\%$ to $32\%$, respectively. The impacts of changes in soil texture and soil moisture are investigated with more than $1,200$ measurements in a novel UG testbed that allows flexibility in soil moisture control. Moreover, the …


Decision Agriculture, Abdul Salam, Usman Raza Aug 2020

Decision Agriculture, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, the latest developments in the field of decision agriculture are discussed. The practice of management zones in digital agriculture is described for efficient and smart faming. Accordingly, the methodology for delineating management zones is presented. Modeling of decision support systems is explained along with discussion of the issues and challenges in this area. Moreover, the precision agriculture technology is also considered. Moreover, the chapter surveys the state of the decision agriculture technologies in the countries such as Bulgaria, Denmark, France, Israel, Malaysia, Pakistan, United Kingdom, Ukraine, and Sweden. Finally, different field factors such as GPS accuracy and …


Underground Phased Arrays And Beamforming Applications, Abdul Salam, Usman Raza Aug 2020

Underground Phased Arrays And Beamforming Applications, Abdul Salam, Usman Raza

Faculty Publications

This chapter presents a framework for adaptive beamforming in underground communication. The wireless propagation is thoroughly analyzed to develop a model using the soil moisture as an input parameter to provide feedback mechanism while enhancing the system performance. The working of array element in the soil is analyzed. Moreover, the effect of soil texture and soil moisture on the resonant frequency and return loss is studied in detail. The wave refraction from the soil–air interface highly degrades the performance of the system. Furthermore, to beam steering is done to achieve high gain for lateral component improving the UG communication. The …


Signals In The Soil: An Introduction To Wireless Underground Communications, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: An Introduction To Wireless Underground Communications, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well.


Underground Wireless Channel Bandwidth And Capacity, Abdul Salam, Usman Raza Aug 2020

Underground Wireless Channel Bandwidth And Capacity, Abdul Salam, Usman Raza

Faculty Publications

The UG channel bandwidth and capacity are vital parameters in wireless underground communication system design. In this chapter, a comprehensive analysis of the wireless underground channel capacity is presented. The impact of soil on return loss, bandwidth, and path loss is discussed. The results of underground multi-carrier modulation capacity are also outlined. Moreover, the single user capacity and multi-carrier capacity are also introduced with an in-depth treatment of soil texture, soil moisture, and distance effects on channel capacity. Finally, the chapter is concluded with a discussion of challenges and open research issues.


Signals In The Soil: Underground Antennas, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: Underground Antennas, Abdul Salam, Usman Raza

Faculty Publications

Antenna is a major design component of Internet of Underground Things (IOUT) communication system. The use of antenna, in IOUT, differs from traditional communication in that it is buried in the soil. Therefore, one of the main challenges, in IOUT applications, is to establish a reliable communication. To that end, there is a need of designing an underground-specific antenna. Three major factors that can impact the performance of a buried antenna are: (1) effect of high soil permittivity changes the wavelength of EM waves, (2) variations in soil moisture with time affecting the permittivity of the soil, and (3) difference …


Soil Moisture And Permittivity Estimation, Abdul Salam, Usman Raza Aug 2020

Soil Moisture And Permittivity Estimation, Abdul Salam, Usman Raza

Faculty Publications

The soil moisture and permittivity estimation is vital for the success of the variable rate approaches in the field of the decision agriculture. In this chapter, the development of a novel permittivity estimation and soil moisture sensing approach is presented. The empirical setup and experimental methodology for the power delay measurements used in model are introduced. Moreover, the performance analysis is explained that includes the model validation and error analysis. The transfer functions are reported as well for soil moisture and permittivity estimation. Furthermore, the potential applications of the developed approach in different disciplines are also examined.


Current Advances In Internet Of Underground Things, Abdul Salam, Usman Raza Aug 2020

Current Advances In Internet Of Underground Things, Abdul Salam, Usman Raza

Faculty Publications

The latest developments in Internet of Underground Things are covered in this chapter. First, the IOUT Architecture is discussed followed by the explanation of the challenges being faced in this paradigm. Moreover, a comprehensive coverage of the different IOUT components is presented that includes communications, sensing, and system integration with the cloud. An in-depth coverage of the applications of the IOUT in various disciplines is also surveyed. These applications include areas such as decision agriculture, pipeline monitoring, border control, and oil wells.


Signals In The Soil: Subsurface Sensing, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: Subsurface Sensing, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, novel subsurface soil sensing approaches are presented for monitoring and real-time decision support system applications. The methods, materials, and operational feasibility aspects of soil sensors are explored. The soil sensing techniques covered in this chapter include aerial sensing, in-situ, proximal sensing, and remote sensing. The underlying mechanism used for sensing is also examined as well. The sensor selection and calibration techniques are described in detail. The chapter concludes with discussion of soil sensing challenges.


Autonomous Irrigation Management In Decision Agriculture, Abdul Salam, Usman Raza Aug 2020

Autonomous Irrigation Management In Decision Agriculture, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, the important application of autonomous irrigation management in the field decision agriculture is discussed. The different types of sensor-guided irrigation systems are presented that includes center pivot systems and drip irrigation systems. Their sensing and actuator components are with detailed focus on real-time decision-making and integration to the cloud. This chapter also presents irrigation control systems which takes, as an input, soil moisture and temperature from IOUT and weather data from Internet and communicate with center pivot based irrigation systems. Moreover, the system architecture is explored where development of the nodes including sensing and actuators is presented. …


Variable Rate Applications In Decision Agriculture, Abdul Salam, Usman Raza Aug 2020

Variable Rate Applications In Decision Agriculture, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, the variable rate applications (VRA) are presented for the field of decision agriculture. The characteristics of VRA control systems are described along with control hardware. Different types of VRA systems are discussed (e.g., liquid VRA systems and dry VRA systems). A case study is also explored in this regard. Moreover, recent advances and future trends are also outlined. Accordingly, a sustainable variable-rate irrigation scheduling is studied where different hardware and software component of the cyber-physical system are considered. Finally, chapter is concluded with a novel sensor deployment methodology.


Zenneck Waves In Decision Agriculture: An Empirical Verification And Application In Em-Based Underground Wireless Power Transfer, Usman Raza, Abdul Salam May 2020

Zenneck Waves In Decision Agriculture: An Empirical Verification And Application In Em-Based Underground Wireless Power Transfer, Usman Raza, Abdul Salam

Faculty Publications

In this article, the results of experiments for the observation of Zenneck surface waves in sub GHz frequency range using dipole antennas are presented. Experiments are conducted over three different soils for communications distances of up to 1 m. This empirical analysis confirms the existence of Zenneck waves over the soil surface. Through the power delay profile (PDP) analysis, it has been shown that other subsurface components exhibit rapid decay as compared to the Zenneck waves. A potential application of the Zenneck waves for energy transmission in the area of decision agriculture is explored. Accordingly, a novel wireless through-the-soil power …


Using Taint Analysis And Reinforcement Learning (Tarl) To Repair Autonomous Robot Software, Damian Lyons, Saba Zahra May 2020

Using Taint Analysis And Reinforcement Learning (Tarl) To Repair Autonomous Robot Software, Damian Lyons, Saba Zahra

Faculty Publications

It is important to be able to establish formal performance bounds for autonomous systems. However, formal verification techniques require a model of the environment in which the system operates; a challenge for autonomous systems, especially those expected to operate over longer timescales. This paper describes work in progress to automate the monitor and repair of ROS-based autonomous robot software written for an a-priori partially known and possibly incorrect environment model. A taint analysis method is used to automatically extract the data-flow sequence from input topic to publish topic, and instrument that code. A unique reinforcement learning approximation of MDP utility …


On-Site And External Energy Harvesting In Underground Wireless, Usman Raza, Abdul Salam Apr 2020

On-Site And External Energy Harvesting In Underground Wireless, Usman Raza, Abdul Salam

Faculty Publications

Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground …


A New Ectotherm 3d Tracking And Behavior Analytics System Using A Depth-Based Approach With Color Validation, With Preliminary Data On Kihansi Spray Toad (Nectophrynoides Asperginis) Activity, Philip Bal, Damian Lyons, Avishai Shuter Mar 2020

A New Ectotherm 3d Tracking And Behavior Analytics System Using A Depth-Based Approach With Color Validation, With Preliminary Data On Kihansi Spray Toad (Nectophrynoides Asperginis) Activity, Philip Bal, Damian Lyons, Avishai Shuter

Faculty Publications

The Kihansi spray toad (Nectophrynoides asperginis), classified as Extinct in the Wild by the IUCN, is being bred at the Wildlife Conservation Society’s (WCS) Bronx Zoo as part of an effort to successfully reintroduce the species into the wild. Thousands of toads live at the Bronx Zoo presenting an opportunity to learn more about their behaviors for the first time, at scale. It is impractical to perform manual observations for long periods of time. This paper reports on the development of a RGB-D tracking and analytics approach that allows researchers to accurately and efficiently gather information about the toads’ behavior. …


Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam Feb 2020

Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam

Faculty Publications

Storm drains and sanitary sewers are prone to backups and overflows due to extra amount wastewater entering the pipes. To prevent that, it is imperative to efficiently monitor the urban underground infrastructure. The combination of sensors system and wireless underground communication system can be used to realize urban underground IoT applications, e.g., storm water and wastewater overflow monitoring systems. The aim of this article is to establish a feasibility of the use of wireless underground communications techniques, and wave propagation through the subsurface soil and asphalt layers, in an underground pavement system for storm water and sewer overflow monitoring application. …


A Monte Carlo Approach To Closing The Reality Gap, Damian Lyons, James Finocchiaro, Michael Novitzky, Christopher Korpela Feb 2020

A Monte Carlo Approach To Closing The Reality Gap, Damian Lyons, James Finocchiaro, Michael Novitzky, Christopher Korpela

Faculty Publications

We propose a novel approach to the ’reality gap’ problem, i.e., modifying a robot simulation so that its performance becomes more similar to observed real world phenomena. This problem arises whether the simulation is being used by human designers or in an automated policy development mechanism. We expect that the program/policy is developed using simulation, and subsequently deployed on a real system. We further assume that the program includes a monitor procedure with scalar output to determine when it is achieving its performance objectives. The proposed approach collects simulation and real world observations and builds conditional probability functions. These are …


Internet Of Things For Environmental Sustainability And Climate Change, Abdul Salam Jan 2020

Internet Of Things For Environmental Sustainability And Climate Change, Abdul Salam

Faculty Publications

Our world is vulnerable to climate change risks such as glacier retreat, rising temperatures, more variable and intense weather events (e.g., floods, droughts, and frosts), deteriorating mountain ecosystems, soil degradation, and increasing water scarcity. However, there are big gaps in our understanding of changes in regional climate and how these changes will impact human and natural systems, making it difficult to anticipate, plan, and adapt to the coming changes. The IoT paradigm in this area can enhance our understanding of regional climate by using technology solutions, while providing the dynamic climate elements based on integrated environmental sensing and communications that …


Internet Of Things For Sustainable Community Development: Introduction And Overview, Abdul Salam Jan 2020

Internet Of Things For Sustainable Community Development: Introduction And Overview, Abdul Salam

Faculty Publications

The two-third of the city-dwelling world population by 2050 poses numerous global challenges in the infrastructure and natural resource management domains (e.g., water and food scarcity, increasing global temperatures, and energy issues). The IoT with integrated sensing and communication capabilities has the strong potential for the robust, sustainable, and informed resource management in the urban and rural communities. In this chapter, the vital concepts of sustainable community development are discussed. The IoT and sustainability interactions are explained with emphasis on Sustainable Development Goals (SDGs) and communication technologies. Moreover, IoT opportunities and challenges are discussed in the context of sustainable community …


Internet Of Things In Agricultural Innovation And Security, Abdul Salam Jan 2020

Internet Of Things In Agricultural Innovation And Security, Abdul Salam

Faculty Publications

The agricultural Internet of Things (Ag-IoT) paradigm has tremendous potential in transparent integration of underground soil sensing, farm machinery, and sensor-guided irrigation systems with the complex social network of growers, agronomists, crop consultants, and advisors. The aim of the IoT in agricultural innovation and security chapter is to present agricultural IoT research and paradigm to promote sustainable production of safe, healthy, and profitable crop and animal agricultural products. This chapter covers the IoT platform to test optimized management strategies, engage farmer and industry groups, and investigate new and traditional technology drivers that will enhance resilience of the farmers to the …


Internet Of Things For Water Sustainability, Abdul Salam Jan 2020

Internet Of Things For Water Sustainability, Abdul Salam

Faculty Publications

The water is a finite resource. The issue of sustainable withdrawal of freshwater is a vital concern being faced by the community. There is a strong connection between the energy, food, and water which is referred to as water-food-energy nexus. The agriculture industry and municipalities are struggling to meet the demand of water supply. This situation is particularly exacerbated in the developing countries. The projected increase in world population requires more fresh water resources. New technologies are being developed to reduce water usage in the field of agriculture (e.g., sensor guided autonomous irrigation management systems). Agricultural water withdrawal is also …


Internet Of Things For Sustainability: Perspectives In Privacy, Cybersecurity, And Future Trends, Abdul Salam Jan 2020

Internet Of Things For Sustainability: Perspectives In Privacy, Cybersecurity, And Future Trends, Abdul Salam

Faculty Publications

In the sustainability IoT, the cybersecurity risks to things, sensors, and monitoring systems are distinct from the conventional networking systems in many aspects. The interaction of sustainability IoT with the physical world phenomena (e.g., weather, climate, water, and oceans) is mostly not found in the modern information technology systems. Accordingly, actuation, the ability of these devices to make changes in real world based on sensing and monitoring, requires special consideration in terms of privacy and security. Moreover, the energy efficiency, safety, power, performance requirements of these device distinguish them from conventional computers systems. In this chapter, the cybersecurity approaches towards …


Internet Of Things In Water Management And Treatment, Abdul Salam Jan 2020

Internet Of Things In Water Management And Treatment, Abdul Salam

Faculty Publications

The goal of the water security IoT chapter is to present a comprehensive and integrated IoT based approach to environmental quality and monitoring by generating new knowledge and innovative approaches that focus on sustainable resource management. Mainly, this chapter focuses on IoT applications in wastewater and stormwater, and the human and environmental consequences of water contaminants and their treatment. The IoT applications using sensors for sewer and stormwater monitoring across networked landscapes, water quality assessment, treatment, and sustainable management are introduced. The studies of rate limitations in biophysical and geochemical processes that support the ecosystem services related to water quality …


Fkrr-Mvsf: A Fuzzy Kernel Ridge Regression Model For Identifying Dna-Binding Proteins By Multi-View Sequence Features Via Chou's Five-Step Rule, Yi Zou, Yije Ding, Jijun Tang, Fei Guo, Li Peng Sep 2019

Fkrr-Mvsf: A Fuzzy Kernel Ridge Regression Model For Identifying Dna-Binding Proteins By Multi-View Sequence Features Via Chou's Five-Step Rule, Yi Zou, Yije Ding, Jijun Tang, Fei Guo, Li Peng

Faculty Publications

DNA-binding proteins play an important role in cell metabolism. In biological laboratories, the detection methods of DNA-binding proteins includes yeast one-hybrid methods, bacterial singles and X-ray crystallography methods and others, but these methods involve a lot of labor, material and time. In recent years, many computation-based approachs have been proposed to detect DNA-binding proteins. In this paper, a machine learning-based method, which is called the Fuzzy Kernel Ridge Regression model based on Multi-View Sequence Features (FKRR-MVSF), is proposed to identifying DNA-binding proteins. First of all, multi-view sequence features are extracted from protein sequences. Next, a Multiple Kernel Learning (MKL) algorithm …