Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 103

Full-Text Articles in Physical Sciences and Mathematics

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre Mar 2024

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre

Doctoral Dissertations

Polyoxometalates (POMs) are a class of inorganic molecule of increasing interest to the inorganic, bioinorganic and catalytic communities among many others. While their prevalence in research has increased, tools and methodologies for the analysis of their fundamental characteristics still need further development. Decavanadate (V10) specifically has been postulated to have several unique properties that have not been confirmed independently. Mass spectrometry (MS) and its ability to determine the composition of solution phase species by both mass and charge is uniquely well suited to the analysis of POMs. In this work we utilized high-resolution mass spectrometry to characterize V10 in aqueous …


Integration Of Raman Spectroscopy And Python-Based Data Analysis For Advancing Neurobiological Research, Natalie E. Dunn Dec 2023

Integration Of Raman Spectroscopy And Python-Based Data Analysis For Advancing Neurobiological Research, Natalie E. Dunn

Doctoral Dissertations

The field of Raman spectroscopy continues to expand into biological applications due to its usefulness as a non-invasive technique that can be utilized qualitatively and quantitatively. However, the inherent weakness of Raman scattering leads to the need for each collected spectra to undergo a preprocessing step to remove noise, background drift, and cosmic rays. Biological research in particular needs large datasets due to the increased variability in samples. As datasets grow, the need to perform preprocessing on each individual spectra becomes daunting. Often, these steps are done by hand with the help of specialized software programs. Preprocessing can be accelerated …


Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov Nov 2023

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov

Doctoral Dissertations

Reactive chemistries for protein chemical modification play an instrumental role in chemical biology, proteomics, and therapeutics. Depending on the application, the selectivity of these modifications can range from precise modification of an amino acid sequence by genetic manipulation of protein expression machinery to a stochastic modification of lysine residues on the protein surface. Ligand-Directed (LD) chemistry is one of the few methods for targeted modification of endogenous proteins without genetic engineering. However, current LD strategies are limited by stringent amino acid selectivity. To bridge this gap, this thesis focuses on the development of highly reactive LD Triggerable Michael Acceptors (LD-TMAcs) …


Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park Aug 2023

Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park

Doctoral Dissertations

Multiferroic materials attract significant attention due to their potential utility in a broad range of device applications. The inclusion of heavy metal centers in these materials enhances their magnetoelectric properties, yielding fascinating physical phenomena such as the Dzyaloshinskii–Moriya interaction, nonreciprocal directional dichroism, enhancement of spin-phonon coupling, and spin-orbit-entangled ground states. This dissertation provides a comprehensive survey of magnetoelectric multiferroics containing heavy metal centers and explores spectroscopic techniques under extreme conditions. A microscopic examination of phase transitions, symmetry-breaking, and structure-property relationships enhances the fundamental understanding of coupling mechanisms.

In A2Mo3O8 (A = Fe, Zn, Ni, and Mn), we use optical spectroscopy …


Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg May 2023

Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg

Doctoral Dissertations

Molten chloride salts have vast potential as heat transfer fluids with both nuclear and concentrated solar power applications. For application in energy systems, the characteristics that govern these systems must be well understood. This work focuses on inorganic molten chloride salts with a special emphasis on the experimental aspect of chemical research. Chapter 2 covers the synthetic approaches for the formation of molten chloride mixtures. Many salts can be purchased from industrial suppliers, but most must be purified therefore, Chapter 3 evaluates various methodology developed for removal of impurities in salt mixtures. Once the salt of proper content and purity …


Mechanochemical Synthesis Of Task-Specific Conjugated Porous Networks Towards Enhanced Energy Storage, Juntian Fan May 2023

Mechanochemical Synthesis Of Task-Specific Conjugated Porous Networks Towards Enhanced Energy Storage, Juntian Fan

Doctoral Dissertations

Conjugated scaffolds with high electronic conductivity, high surface area, etc. are promising materials for diverse technological applications, especially in the electrochemical field. However, the current synthesis methods are still limited to the traditional solution-based method or the ionothermal method, which always require an inert atmosphere shield, large amounts of organic solvents, noble catalysts, long reaction time up to days, and high temperatures, etc. Therefore, there is a common goal of developing conjugated scaffolds through facile, green, straightforward pathways. Mechanochemistry, which is an efficient, sustainable, solvent-free methodology, could provide a unique reaction environment to synthesize this kind of functionalized materials, resulting …


Utilizing Ultra-Performance Chromatography High-Resolution Mass Spectrometry To Investigate Fatty Acid Mediated Antibiotic Tolerance, Brittni Woodall May 2023

Utilizing Ultra-Performance Chromatography High-Resolution Mass Spectrometry To Investigate Fatty Acid Mediated Antibiotic Tolerance, Brittni Woodall

Doctoral Dissertations

The lipid membrane is the first component necessary to sustain life. To maintain homeostasis, segregate cellular machinery, provide protection from the environment, and reproduce, an organism must establish a boundary in which the processes can occur. Throughout the last two decades, research has propelled our knowledge of lipid membranes much beyond original hypotheses. Once thought of to be static and uniform, the understanding of the lipid membrane has evolved to encompass a structure that is responsive, unique, and intricately constructed by the organism itself. By chance or by choice, organisms adapt the lipid membrane according to the environment for which …


Intra-Skeletal Variation In Stable Isotopes Through Non-Destructive Approaches: Applications Of The Patterns Of Skeletal Remodeling To Biological Anthropology, Armando Anzellini Dec 2022

Intra-Skeletal Variation In Stable Isotopes Through Non-Destructive Approaches: Applications Of The Patterns Of Skeletal Remodeling To Biological Anthropology, Armando Anzellini

Doctoral Dissertations

Stable isotope analysis is a well-established method in biological anthropology used to deliver data on residence, diet, and life history. Samples for these analyses are often collected from the diaphyses of long bones with an assumption of an expected rate of turnover between five and ten years, depending on the skeletal element. However, the biological foundations of this assumption are still uncertain, especially concerning the intra-skeletal and intra-element variation of isotopic signatures that may relate to patterns of remodeling. Exploring these gaps in intra-element isotopic variation requires fine-grained work using multiple bones from multiple individuals, but such work is limited …


Light Matter Interactions: A Study Of Soft Materials Using Linear And Nonlinear Spectroscopy, Muhammad Redwan Hassan Dec 2022

Light Matter Interactions: A Study Of Soft Materials Using Linear And Nonlinear Spectroscopy, Muhammad Redwan Hassan

Doctoral Dissertations

The adoption of complex fluids for various industrial applications is becoming normal. Complex fluids offer tunability, wide range solubility, and chemical and thermal stability which are the factors that conventional polar and non-polar solvents often lack. However, fundamental studies of these fluid systems are still lacking which is limiting the appropriate use of these complex fluids in many applications. The goal of this dissertation was to study and characterize complex fluids for application in electrolytes for redox flow batteries. Chapter 3 and chapter 4 feature the study of microemulsions and deep eutectic solvents (DES) by fluorescence techniques. Fluorescence studies of …


Analytical Techniques For The Analysis Of Uranium Bearing Materials, Nathaniel D. Fletcher Dec 2022

Analytical Techniques For The Analysis Of Uranium Bearing Materials, Nathaniel D. Fletcher

Doctoral Dissertations

The interest in the use of nuclear power has increased drastically in recent years. This is due to significantly increased efficiency at producing energy when compared to fossil fuels. With the increased use of nuclear power comes an increased need to for monitor for uranium bearing materials outside of regulatory control. This dissertation covers four projects aimed at improving the analysis of these materials. The first projects aims to develop a method that allows for the analysis of elements that exist in nature as anions by triple quadrupole ICP – MS. This would allow for the ability to measure more …


Development Of Raman Spectroscopic Methods For Detection Of Molecules Indicating Life In Extraterrestrial Environments, Grace Sarabia Dec 2022

Development Of Raman Spectroscopic Methods For Detection Of Molecules Indicating Life In Extraterrestrial Environments, Grace Sarabia

Doctoral Dissertations

Mineral analysis is of great importance to the understanding of the world around us and worlds beyond. Geology, chemistry, and environmental studies all benefit from characterization of the structure and properties of minerals. While various techniques have been applied towards the study of minerals, we propose that Raman spectroscopy is specifically suited for the detection and study of minerals under various conditions, including for terrestrial and space applications.

In our terrestrial studies, we explored the polymorphs of calcium carbonate within freshwater mollusk shell matrices with Raman spectroscopy. We found that aragonite was the main calcium carbonate polymorph present in the …


Intracellular Delivery Of Therapeutic Biomolecules Through Versatile Polymer Nanotechnology, David C. Luther Oct 2022

Intracellular Delivery Of Therapeutic Biomolecules Through Versatile Polymer Nanotechnology, David C. Luther

Doctoral Dissertations

Advancing pharmaceutical technology has made it possible to treat diseases once considered ‘undruggable.’ Access to these new pharmaceutical targets is possible thanks to the advent of protein and nucleic acid therapeutics. Responses to the COVID-19 pandemic, as well as cutting-edge treatments for cancer and multiple sclerosis have centered on these biologic therapies, promising even greater value in the future. However, their utility is limited at a cellular level by inability to cross the plasma membrane. Nanocarrier technologies encapsulate therapeutics and facilitate uptake into the cell but are often trapped and degraded in endosomes. Arginine-functionalized gold nanoparticles (Arg-NPs) provide efficient, direct …


Elucidating Molecular Structure And Interactions Of Disease-Related Noncovalent Assemblies Through Ion Mobility Spectrometry - Mass Spectrometry, Amber Leann Hope Gray Aug 2022

Elucidating Molecular Structure And Interactions Of Disease-Related Noncovalent Assemblies Through Ion Mobility Spectrometry - Mass Spectrometry, Amber Leann Hope Gray

Doctoral Dissertations

Ion mobility spectrometry – mass spectrometry (IMS-MS) is a powerful gas-phase technique that is routinely employed in the investigations of amyloid oligomers and conformational studies due to its ability to separate isobaric and isomeric species with the same mass-to-charge ratio (m/z). The goal of this dissertation is to use IMS-MS as a primary platform to probe the conformational landscape of a macrocyclic protein, Cyclosporin A (CycA), and to characterize interactions of amyloidogenic assemblies. Through five independent studies presented within document, the limits of IMS-MS are pushed by employing conditions which mimic biological environments.

Chapter 2 focused on how …


Deciphering Protein Higher-Order Structure And Interactions Via Diethylpyrocarbonate Labeling-Mass Spectrometry, Xiao Pan Mar 2022

Deciphering Protein Higher-Order Structure And Interactions Via Diethylpyrocarbonate Labeling-Mass Spectrometry, Xiao Pan

Doctoral Dissertations

The study of protein higher-order structures is vital because it is closely related to the investigation of protein folding, aggregation, interaction and protein therapeutics. Consequently, numerous biochemical and biophysical tools have been developed to study protein higher-order structures in many different situations. The combination of covalent labeling (CL) and mass spectrometry (MS) has emerged as a powerful tool for studying protein structures and offers many advantages over other traditional techniques, such as better structural coverage, high throughput, high sensitivity, and the ability to study proteins in mixtures. This dissertation focuses on diethylpyrocarbonate (DEPC) as an effective CL reagent that can …


Manipulating The Properties Of Light-Responsive Active Lipid Bilayer Membranes: Measuring Mechanics And Probing Mechanisms, Arash Manafirad Feb 2022

Manipulating The Properties Of Light-Responsive Active Lipid Bilayer Membranes: Measuring Mechanics And Probing Mechanisms, Arash Manafirad

Doctoral Dissertations

This thesis explores an experimental system probing the effect of energy input (in light-responsive bilayers) on membrane physicomechanical properties and dynamics of response to a trigger. We were inspired by the ability of cell membranes to alter their elastic and permeability properties and shape in response to energy input, change in lipid chemistry, or bilayer composition. Our work demonstrates and sheds new light on the roles of lipid chemical character, light-responsive moieties' incorporation in the membrane, and the lipid bilayer's mechanical properties on membrane response to chemical tuning or energy input. To observe how lipid chemistry affects membrane physical properties …


Quantitative Imaging Of Tensile Forces At Cell-Cell Junction With Dna-Based Probes, Puspam Keshri Feb 2022

Quantitative Imaging Of Tensile Forces At Cell-Cell Junction With Dna-Based Probes, Puspam Keshri

Doctoral Dissertations

Mechanical forces are an integral part in biology, they regulate several cellular properties, such as morphology, proliferation, migration. These forces are also involved in receptor signaling and the differentiation of different cell types. Different proteins and biomolecules such as cadherin, integrin, notch proteins are essential elements of these processes. Measuring these intercellular forces are challenging considering the minimal intensity (piconewton-level) of these molecular forces. In our lab, we have developed a membrane DNA tension probe (MDTP) that uses a DNA hairpin module to sense tensile forces and has a lipid anchor to modify onto live-cell membranes. The programmability of DNA …


Establishing Pteridine Metabolism In A Breast Cancer Cell Model And Quantification Of Silver Nanoparticle Interactions With Yeast Cells Using Mass Spectrometry, Lindsey Katherine Rasmussen Jan 2022

Establishing Pteridine Metabolism In A Breast Cancer Cell Model And Quantification Of Silver Nanoparticle Interactions With Yeast Cells Using Mass Spectrometry, Lindsey Katherine Rasmussen

Doctoral Dissertations

"Recent advances in analytical methods have furthered the quantitative insights that can be gleaned from cellular analyses, with applications in cancer and nanoparticle research. In the first part of the research presented, a recently developed HPLC-MS/MS method was advanced to elucidate pteridine metabolism in an isogenic progressive MCF10A breast cancer cell model. The folate-derived pteridine pathway in breast cells was established by individually dosing cell cultures with folic acid and 15 pteridines. Eight potential pteridine biomarkers in breast cancer cells were identified including pterin and isoxanthopterin, which yielded the first in vitro evidence for the cellular metabolisms behind previously reported …


Total Internal Reflection: Applications In Nonlinear Microscopy And Fluorescence Anisotropy, Brandon Colon Dec 2021

Total Internal Reflection: Applications In Nonlinear Microscopy And Fluorescence Anisotropy, Brandon Colon

Doctoral Dissertations

As technology advances to harness new energies and to create new cures, the sophistication of analysis grows not only in depth but in efficiency. Total internal reflection (TIR) has been coupled to microscopy leveraging its unique optical phenomenon on a breadth of topics. In this dissertation, the work presented will show how TIR was applied in two different instrumental analyses to evaluate two unique and complex systems. The first project features TIR paired with the transient absorption microscopy (TAM), a nonlinear optical technique, to gauge solvent mixing and diffusion in microreactors. Microreactors gained acclaim for their ability to produce high …


Instrument Development For High Sensitivity Size Characterization Of Lipid Vesicles And Other Biological Macromolecules Via Taylor Dispersion Analysis, Meagan Moser Dec 2021

Instrument Development For High Sensitivity Size Characterization Of Lipid Vesicles And Other Biological Macromolecules Via Taylor Dispersion Analysis, Meagan Moser

Doctoral Dissertations

Just as humans communicate with other humans, the cells in our bodies communicate with each other through various, often complex, mechanisms. Cell-to-cell transmission of small molecules, lipids, proteins, peptides, or nucleic acids can be mediated by extracellular lipid vesicles called exosomes. Exosomes have been found to play a role in the delivery of regulatory molecules from one cell to another, serving as a universal communication mechanism. Currently, there is an emerging focus on characterizing exosome communication dynamics. Understanding exosome mechanisms of cell-to-cell communication requires accurate measurements of the spatiotemporal and chemical dynamics of exosome secretion. No current analytical approach offers …


Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri Dec 2021

Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri

Doctoral Dissertations

High-entropy materials (HEMs) have emerged as a new class of multi-principal-element materials with great technological prospects. As a unique class of concentrated solid-solution materials, HEMs, formed on the premise of incorporating five or more principal elements into a single crystalline phase, provide an excellent opportunity to access superior catalytic materials ‘hiding’ in the unexplored central regions of a multicomponent phase space of higher orders.

However, the fabrication of HEMs is energy-intensive, typically requiring extreme temperatures and/or pressures under which agglomeration of particles occurs with a commensurate decrease in surface area. For most catalytic applications, non-agglomerated particles with high surface areas …


Analytical Considerations And Methods For Comprehensive Analysis Of Bacterial Phospholipidomics Using Hilic-Ms/Ms, David Thomas Reeves Dec 2021

Analytical Considerations And Methods For Comprehensive Analysis Of Bacterial Phospholipidomics Using Hilic-Ms/Ms, David Thomas Reeves

Doctoral Dissertations

Omics technologies have rapidly evolved over the last half century through vast improvements in efficient extraction methodologies, advances in instrumentation for data collection, and a wide assortment of informatics tools to help deconvolute sample data sets. However, there are still untapped pools of molecules that warrant further analytical attention. As the frontline defense of the cell against exterior influences, the phospholipid membrane is key in structure, defense, and signaling, but current omics studies are only just now catching up to the potential hidden within cellular lipid profiles. Examination of shifts in phospholipid speciation and character could provide researchers with a …


Antibiotic Sensitivity Testing Of Foodborne Bacteria Using Surface-Enhanced Raman Spectroscopy, Joshua Gukowsky Oct 2021

Antibiotic Sensitivity Testing Of Foodborne Bacteria Using Surface-Enhanced Raman Spectroscopy, Joshua Gukowsky

Doctoral Dissertations

The spread of antibiotic resistant bacteria around the world has become a major public health issue, and it is essential that effective detection methods exist for identifying these organisms and preventing them from spreading throughout our food systems and into the environment. The goal of this research is to develop a novel analytical procedure that is capable of easily identifying antibiotic resistance in bacterial samples, and also provides more information about the biochemical characteristics of the bacteria and their responses to antibiotic exposure. Surface-enhanced Raman Spectroscopy (SERS), an analytical technique that uses light scattering to produce a spectrum based on …


Computational Approaches For The Multimodal Imaging Of Nanomaterials And Their Biochemical Effects, Laura J. Castellanos Oct 2021

Computational Approaches For The Multimodal Imaging Of Nanomaterials And Their Biochemical Effects, Laura J. Castellanos

Doctoral Dissertations

Nanomaterial delivery systems constitute a group of drug delivery vehicles that have been used extensively in biodelivery. The proper characterization of the therapeutic function of these nanomaterials requires analytical methods to track the presence of the cargo and its biochemical effects. In some cases, the detection of the cargo and biochemical changes are not attainable in the same experiment, and more than one technique might be needed for the proper analysis of the drug delivery system. In this case, separate analysis of adjacent tissue sections is performed by techniques that offer complementary information such as MALDI-MS and LA-ICP-MS. However, the …


Amyloidogenesis Of Β-2-Microglobulin Studied By Mass Spectrometry And Covalent Labeling, Blaise G. Arden Oct 2021

Amyloidogenesis Of Β-2-Microglobulin Studied By Mass Spectrometry And Covalent Labeling, Blaise G. Arden

Doctoral Dissertations

Amyloid-forming proteins are implicated in a number of debilitating diseases. While many amyloid-forming proteins are well studied, the early stages of amyloidosis are still not well understood on a molecular level. Covalent labeling, combined with mass spectrometry (CL-MS), is uniquely well suited to provide molecular-level insight into the factors governing the early stages of amyloidosis. This dissertation leverages CL-MS techniques to examine the early stages of β-2-microglobulin (β2m) amyloidosis. β2m is the protein that forms amyloids in the condition known as dialysis-related amyloidosis. An automated CL-MS technique that uses dimethyl(2-hydroxy-5-nitrobenzyl) sulfonium bromide as a labeling reagent was developed and used …


Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


High Throughput Analysis To Study Emerging Pollutants And Nanoparticle Fate In Biological Systems, Xiaolong He Jan 2021

High Throughput Analysis To Study Emerging Pollutants And Nanoparticle Fate In Biological Systems, Xiaolong He

Doctoral Dissertations

”The increasing applications of emerging and fugitive contaminants (EFCs) and engineered nanoparticles (ENPs) attract significant research interest for their potential risks to human health and the environment. In order to assess the health risks of these emerging contaminants, rapid and reliable analytical methods to measure the concentrations and fates of these contaminants are imperative. This dissertation focuses on the developments of advanced analytical methods and their applications to study those emerging contaminants in crop plant and simulated gastric fluid (SGF). Three types of mass spectrometry based methodologies have been developed, one is freeze-thaw/centrifugation extraction followed by high performance liquid chromatography …


Analysis Of Titanium Dioxide Nanoparticles In Foods Using Raman Spectroscopic Techniques, Janamkumar Pandya Dec 2020

Analysis Of Titanium Dioxide Nanoparticles In Foods Using Raman Spectroscopic Techniques, Janamkumar Pandya

Doctoral Dissertations

Titanium dioxide (TiO2) and its nanoparticles (NPs) are widely used in various applications. Recently, the presence of TiO2 NPs in food and consumer products raised safety concerns to human health and the environment. The goal of this project is to explore the capability of Raman Spectroscopy in the analysis of TiO2-NPs and apply this technique for the analysis of TiO2-NPs in food and environmental samples. Two approaches, i.e. the ligand-based and the mapping-based, were evaluated. The ligand-based approach utilized the surface enhanced Raman scattering (SERS) property of the TiO2 NPs as a substrate to enhance the signal of a surface …


Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora Dec 2020

Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora

Doctoral Dissertations

Gold nanoparticles (AuNPs) are attractive materials for use in various biomedical applications, such as therapeutic delivery, due to their unique chemical properties and modular tunability. Mass spectrometry methods, including laser desorption/ionization mass spectrometry (LDI-MS) and inductively coupled plasma mass spectrometry (ICP-MS) have been successfully used to evaluate the distribution of AuNPs in complex biological systems. As new AuNP-based materials are developed for applications in therapeutic delivery, it is essential to simultaneously develop analytical techniques that can comprehensively assess their behavior in vivo. In this dissertation, novel mass spectrometric methods have been developed and utilized to evaluate the uptake, distribution, …


Using Second Harmonic Generation To Study Gram-Positive Bacterial Membranes, Lindsey N. Miller Dec 2020

Using Second Harmonic Generation To Study Gram-Positive Bacterial Membranes, Lindsey N. Miller

Doctoral Dissertations

Understanding how small-molecules, such as drugs, interact with bacterial membranes can quickly unravel into much more perplexing questions. No two bacterial species are alike, especially when comparing their membrane compositions which can even be altered by incorporating fatty acids from their surrounding environment into their lipid-membrane composition. To further complicate the comparison, discrete alterations in small-molecule structures can result in vastly different membrane-interaction outcomes, giving rise to the need for more "label-free" studies when analyzing drug mechanisms. The work presented in this dissertation highlights the benefits to using nonlinear spectroscopy and microscopy techniques for probing small-molecule interactions in living bacteria. …


Bioanalytical Applications Of Digital Imaging: Applications To Organ-On-Chip And Point-Of-Care Analysis Systems, Amirus Saleheen Aug 2020

Bioanalytical Applications Of Digital Imaging: Applications To Organ-On-Chip And Point-Of-Care Analysis Systems, Amirus Saleheen

Doctoral Dissertations

Qualitative and quantitative analysis through digital imaging has significant potential in several scientific applications including bioanalytical applications. In this document, the implication of digital imaging to validate and characterize a novel microfluidic organ-on-chip device and establish a point-of-care method to estimate epinephrine concentrations in expired and degraded autoinjectors have been described in chapter 2 and 3 respectively. Chapter 4 includes description of the principle and methodology of strong cation exchange-based immunoassay for oxytocin and β-endorphin.

In chapter 2, fabrication of a novel microfluidic organ-on-chip device capable of culturing rodent SCN slices has been discussed. Characterization of the aCSF media droplets …