Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Australian Institute for Innovative Materials - Papers

Carbon

Articles 1 - 30 of 69

Full-Text Articles in Physical Sciences and Mathematics

S/N-Doped Carbon Nanofibers Affording Fe7s8 Particles With Superior Sodium Storage, Xiu Li, Tao Liu, Yunxiao Wang, Shulei Chou, Xun Xu, Anmin Cao, Libao Chen Jan 2020

S/N-Doped Carbon Nanofibers Affording Fe7s8 Particles With Superior Sodium Storage, Xiu Li, Tao Liu, Yunxiao Wang, Shulei Chou, Xun Xu, Anmin Cao, Libao Chen

Australian Institute for Innovative Materials - Papers

2020 Iron sulfides draw much attention as electrode candidates for sodium-ion batteries (SIBs) due to the rich chemical stoichiometries and high capacity. However, they usually exhibit poor cycling performance due to the large volume change during sodiation/desodiation process. In this work, we embed Fe7S8 nanoparticles into sulfur, nitrogen-doped carbon (S/N-C) nanofibers through electrospinning/sulfurization processes. The heteroatom doped carbon matrixes could effectively protect the Fe7S8 from structural collapse, obtaining a stable cycling performance. Moreover, the conductive matrixes with 1D structure can facilitate the diffusion of electrons, leading to good rate capability. As results, the as-designed Fe7S8@S/N-C nanofibers present a discharge capacity …


Bio‑Derived Hierarchical Multicore-Shell Fe2n‑Nanoparticle‑Impregnated N‑Doped Carbon Nanofiber Bundles: A Host Material For Lithium‑/Potassium‑Ion Storage, Hongjun Jiang, Ling Huang, Yunhong Wei, Boya Wang, Hao Wu, Yun Zhang, Hua-Kun Liu, Shi Xue Dou Jan 2019

Bio‑Derived Hierarchical Multicore-Shell Fe2n‑Nanoparticle‑Impregnated N‑Doped Carbon Nanofiber Bundles: A Host Material For Lithium‑/Potassium‑Ion Storage, Hongjun Jiang, Ling Huang, Yunhong Wei, Boya Wang, Hao Wu, Yun Zhang, Hua-Kun Liu, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Despite the significant progress in the fabrication of advanced electrode materials, complex control strategies and tedious processing are often involved for most targeted materials to tailor their compositions, morphologies, and chemistries. Inspired by the unique geometric structures of natural biomacromolecules together with their high affinities for metal species, we propose the use of skin collagen fibers for the template crafting of a novel multicore-shell Fe2N-carbon framework anode configuration, composed of hierarchical N-doped carbon nanofiber bundles firmly embedded with Fe2N nanoparticles (Fe2N@N-CFBs). In the resultant heterostructure, the Fe2N nanoparticles firmly confined inside the carbon shells are spatially isolated but electronically well …


Electrostatically Assembled Construction Of Ternary Tio2-Cu@C Hybrid With Enhanced Solar-To-Hydrogen Evolution Employing Amorphous Carbon Dots As Electronic Mediator, Jiaxin Zhu, Mengmeng Zhang, Jinyan Xiong, Yinan Yan, Weijie Li, Gang Cheng Jan 2019

Electrostatically Assembled Construction Of Ternary Tio2-Cu@C Hybrid With Enhanced Solar-To-Hydrogen Evolution Employing Amorphous Carbon Dots As Electronic Mediator, Jiaxin Zhu, Mengmeng Zhang, Jinyan Xiong, Yinan Yan, Weijie Li, Gang Cheng

Australian Institute for Innovative Materials - Papers

The huge demand for renewable hydrogen produced by water splitting has prompted people to conduct in-depth research on the hydrogen evolution reaction for the development of earth-abundant, non-precious, and multi-functional metal catalysts. Herein, a noble-metal-free ternary composite of TiO2-Cu@C was prepared by electrostatic self-assembly loaded copper nanoparticles and amorphous carbon dots (CDs) on porous TiO2 microrods. The good conductivity of the CDs was beneficial to promoting the charge transfer and separation, generating an enhanced solar-to-hydrogen performance on TiO2-Cu@C. The optimized TiO2-Cu@C reveals a stable and notable hydrogen evolution rate of 3911 μmol g−1h−1, which is 1.6 times that of TiO2-Cu …


Synthesis Of Cose2-Snse2 Nanocube-Coated Nitrogen-Doped Carbon (Nc) As Anode For Lithium And Sodium Ion Batteries, Jin Bai, Huimin Wu, Shiquan Wang, Guangxue Zhang, Chuanqi Feng, Hua-Kun Liu Jan 2019

Synthesis Of Cose2-Snse2 Nanocube-Coated Nitrogen-Doped Carbon (Nc) As Anode For Lithium And Sodium Ion Batteries, Jin Bai, Huimin Wu, Shiquan Wang, Guangxue Zhang, Chuanqi Feng, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

CoSe2-SnSe2/NC nanocubes (CSNC@NC) coated by nitrogen-doped carbon (NC) were synthesized successfully by an ordinary pyrazole polymerization and carbonization process. In comparison with bare CSNC, the CSNC@NC composite exhibited good structural stability and improved electrical conductivity when used as anode. The CSNC@NC electrode showed a stable Li storage capacity (730.41 mAh g−1 over 100 cycles at 0.2 A g−1) and excellent rate performance (402.10 mAh g−1 at 2 A g−1). For Na storage, the discharge capacity could be maintained 279.3 mAh g−1 over 100 cycles at 0.2 A g−1; the lower capacity than that for Li storage maybe caused by the …


Constructing Coo/Co3s4 Heterostructures Embedded In N-Doped Carbon Frameworks For High-Performance Sodium-Ion Batteries, Can Guo, Wenchao Zhang, Yi Liu, Jiapeng He, Shun Yang, Mingkai Liu, Qinghong Wang, Zaiping Guo Jan 2019

Constructing Coo/Co3s4 Heterostructures Embedded In N-Doped Carbon Frameworks For High-Performance Sodium-Ion Batteries, Can Guo, Wenchao Zhang, Yi Liu, Jiapeng He, Shun Yang, Mingkai Liu, Qinghong Wang, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Heterostructures are attractive for advanced energy storage devices due to their rapid charge transfer kinetics, which is of benefit to the rate performance. The rational and facile construction of heterostructures with satisfactory electrochemical performance, however, is still a great challenge. Herein, ultrafine hetero-CoO/Co3S4 nanoparticles embedded in N-doped carbon frameworks (CoO/Co3S4@N-C) are successfully obtained by employing metal-organic frameworks as precursors. As anodes for sodium ion batteries, the CoO/Co3S4@N-C electrodes exhibit high specific capacity (1029.5 mA h g−1 at 100 mA g−1) and excellent rate capability (428.0 mA h g−1 at 5 A g−1), which may be attributed to their enhanced electric …


Porous Nati2(Po4)(3) Nanocubes Anchored On Porous Carbon Nanosheets For High Performance Sodium-Ion Batteries, Ziqi Wang, Jiaojiao Liang, Kai Fan, Xiaodi Liu, Caiyun Wang, Jianmin Ma Jan 2018

Porous Nati2(Po4)(3) Nanocubes Anchored On Porous Carbon Nanosheets For High Performance Sodium-Ion Batteries, Ziqi Wang, Jiaojiao Liang, Kai Fan, Xiaodi Liu, Caiyun Wang, Jianmin Ma

Australian Institute for Innovative Materials - Papers

NaTi2(PO4)3 has attracted great interest as anode material for sodium ion batteries owing to its open three-dimensional framework structure and limited volume changes during the charge and discharge process. However, the poor intrinsic electronic conductivity of NaTi2(PO4)3 needs to be improved for high rate capability. In this work, porous NaTi2(PO4)3 nanocubes anchored on porous carbon nanosheets (NaTi2(PO4)3/C) are designed and developed. This material exhibits a large discharge capacity and good rate capacity including a first discharge capacity of 485 mAh g−1 at a current density of 0.1 A g−1, and 98 mAh g−1 retained at a high rate of 4 …


Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn For Selective And Sensitive Detection Of Dopamine, Wed Al-Graiti, Zhilian Yue, Javad Foroughi, Xu-Feng Huang, Gordon G. Wallace, Ray H. Baughman, Jun Chen Jan 2017

Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn For Selective And Sensitive Detection Of Dopamine, Wed Al-Graiti, Zhilian Yue, Javad Foroughi, Xu-Feng Huang, Gordon G. Wallace, Ray H. Baughman, Jun Chen

Australian Institute for Innovative Materials - Papers

The demands for electrochemical sensor materials with high strength and durability in physiological conditions continue to grow and novel approaches are being enabled by the advent of new electromaterials and novel fabrication technologies. Herein, we demonstrate a probe-style electrochemical sensor using highly flexible and conductive multi-walled carbon nanotubes (MWNT) yarns. The MWNT yarn-based sensors can be fabricated onto micro Pt-wire with a controlled diameter varying from 100 to 300 µm, and then further modified with Nafion via a dip-coating approach. The fabricated micro-sized sensors were characterized by electron microscopy, Raman, FTIR, electrical, and electrochemical measurements. For the first time, the …


Hollow Carbon Nanobubbles: Monocrystalline Mof Nanobubbles And Their Pyrolysis, Wei Zhang, Xiangfen Jiang, Yanyi Zhao, Arnau Carne-Sanchez, Victor Malgras, Jeonghun Kim, Jung Ho Kim, Shaobin Wang, Jian Liu, Ji-Sen Jiang, Yusuke Yamauchi, Ming Hu Jan 2017

Hollow Carbon Nanobubbles: Monocrystalline Mof Nanobubbles And Their Pyrolysis, Wei Zhang, Xiangfen Jiang, Yanyi Zhao, Arnau Carne-Sanchez, Victor Malgras, Jeonghun Kim, Jung Ho Kim, Shaobin Wang, Jian Liu, Ji-Sen Jiang, Yusuke Yamauchi, Ming Hu

Australian Institute for Innovative Materials - Papers

While bulk-sized metal-organic frameworks (MOFs) face limits to their utilization in various research fields such as energy storage applications, nanoarchitectonics is believed to be a possible solution. It is highly challenging to realize MOF nanobubbles with monocrystalline frameworks. By a spatially controlled etching approach, here, we can achieve the synthesis of zeolitic imidazolate framework (ZIF-8) nanobubbles with a uniform size of less than 100 nm. Interestingly, the ZIF-8 nanobubbles possess a monocrystalline nanoshell with a thickness of around 10 nm. Under optimal pyrolytic conditions, the ZIF-8 nanobubbles can be converted into hollow carbon nanobubbles while keeping their original shapes. The …


Flexible Polycaprolactone (Pcl) Supercapacitor Based On Reduced Graphene Oxide (Rgo)/Single-Wall Carbon Nanotubes (Swnts) Composite Electrodes, Hyeon Taek Jeong, Yong-Ryeol Kim, Byung Chul Kim Jan 2017

Flexible Polycaprolactone (Pcl) Supercapacitor Based On Reduced Graphene Oxide (Rgo)/Single-Wall Carbon Nanotubes (Swnts) Composite Electrodes, Hyeon Taek Jeong, Yong-Ryeol Kim, Byung Chul Kim

Australian Institute for Innovative Materials - Papers

The reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composites are coated onto the polycaprolactone (PCL) substrate via spray coating technique to prepare a flexible supercapacitor. The electrochemical properties of the flexible PCL supercapacitor as a function of bending cycles and angles are evaluated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge tests. The EIS and charge/discharge curves of the flexible PCL supercapacitor exhibit capacitive behavior even after prolonged bending cycles up to 500. The highest capacitance value of the unbent PCL supercapacitor is 52.5 F g-1 which retained 65% after 500 bending with 6000th galvanostatic charge/discharge cycles.


Capillary-Induced Ge Uniformly Distributed In N-Doped Carbon Nanotubes With Enhanced Li-Storage Performance, Haipeng Guo, Boyang Ruan, Lili Liu, Lei Zhang, Zhanliang Tao, Shulei Chou, Jiazhao Wang, Hua-Kun Liu Jan 2017

Capillary-Induced Ge Uniformly Distributed In N-Doped Carbon Nanotubes With Enhanced Li-Storage Performance, Haipeng Guo, Boyang Ruan, Lili Liu, Lei Zhang, Zhanliang Tao, Shulei Chou, Jiazhao Wang, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Germanium (Ge) is a prospective anode material for lithium-ion batteries, as it possesses large theoretical capacity, outstanding lithium-ion diffusivity, and excellent electrical conductivity. Ge suffers from drastic capacity decay and poor rate performance, however, owing to its low electrical conductivity and huge volume expansion during cycling processes. Herein, a novel strategy has been developed to synthesize a Ge at N-doped carbon nanotubes (Ge at N-CNTs) composite with Ge nanoparticles uniformly distributed in the N-CNTs by using capillary action. This unique structure could effectively buffer large volume expansion. When evaluated as an anode material, the Ge at N-CNTs demonstrate enhanced cycling …


Binder-Free And Carbon-Free 3d Porous Air Electrode For Li-O2 Batteries With High Efficiency, High Capacity, And Long Life, Wenbin Luo, Xuanwen Gao, Dongqi Shi, Shulei Chou, Jiazhao Wang, Hua-Kun Liu Jan 2016

Binder-Free And Carbon-Free 3d Porous Air Electrode For Li-O2 Batteries With High Efficiency, High Capacity, And Long Life, Wenbin Luo, Xuanwen Gao, Dongqi Shi, Shulei Chou, Jiazhao Wang, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Pt-Gd alloy polycrystalline thin film is deposited on 3D nickel foam by pulsed laser deposition method serving as a whole binder/carbon-free air electrode, showing great catalytic activity enhancement as an efficient bifunctional catalyst for the oxygen reduction and evolution reactions in lithium oxygen batteries. The porous structure can facilitate rapid O2 and electrolyte diffusion, as well as forming a continuous conductive network throughout the whole energy conversion process. It shows a favorable cycle performance in the full discharge/charge model, owing to the high catalytic activity of the Pt-Gd alloy composite and 3D porous nickel foam structure. Specially, excellent cycling performance …


Achieving High-Performance Room-Temperature Sodium−Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres, Yunxiao Wang, Jianping Yang, Weihong Lai, Shulei Chou, Qinfen Gu, Hua-Kun Liu, Dongyuan Zhao, Shi Xue Dou Jan 2016

Achieving High-Performance Room-Temperature Sodium−Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres, Yunxiao Wang, Jianping Yang, Weihong Lai, Shulei Chou, Qinfen Gu, Hua-Kun Liu, Dongyuan Zhao, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Despite the high theoretical capacity of the sodium-sulfur battery, its application is seriously restrained by the challenges due to its low sulfur electroactivity and accelerated shuttle effect, which lead to low accessible capacity and fast decay. Herein, an elaborate carbon framework, interconnected mesoporous hollow carbon nanospheres, is reported as an effective sulfur host to achieve excellent electrochemical performance. Based on in-situ synchrotron X-ray diffraction, the mechanism of the room temperature Na/S battery is proposed to be reversible reactions between S8 and Na2S4, corresponding to a theoretical capacity of 418 mAh g-1. The cell is capable of achieving high capacity retention …


Bio-Inspired, Moisture-Powered Hybrid Carbon Nanotube Yarn Muscles, Shi Hyeong Kim, Cheong Hoon Kwon, Karam Park, Tae Jin Mun, Xavier Lepro, Ray H. Baughman, Geoffrey M. Spinks, Seon Jeong Kim Jan 2016

Bio-Inspired, Moisture-Powered Hybrid Carbon Nanotube Yarn Muscles, Shi Hyeong Kim, Cheong Hoon Kwon, Karam Park, Tae Jin Mun, Xavier Lepro, Ray H. Baughman, Geoffrey M. Spinks, Seon Jeong Kim

Australian Institute for Innovative Materials - Papers

Hygromorph artificial muscles are attractive as self-powered actuators driven by moisture from the ambient environment. Previously reported hygromorph muscles have been largely limited to bending or torsional motions or as tensile actuators with low work and energy densities. Herein, we developed a hybrid yarn artificial muscle with a unique coiled and wrinkled structure, which can be actuated by either changing relative humidity or contact with water. The muscle provides a large tensile stroke (up to 78%) and a high maximum gravimetric work capacity during contraction (2.17 kJ kg−1), which is over 50 times that of the same weight human muscle …


Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang Jan 2016

Superior Sodium-Ion Storage Performance Of Co3o4@Nitrogen-Doped Carbon: Derived From A Metal–Organic Framework, Ying Wang, Caiyun Wang, Yijing Wang, Hua-Kun Liu, Zhenguo Huang

Australian Institute for Innovative Materials - Papers

Nitrogen-doped carbon coated Co 3 O 4 nanoparticles (Co 3 O 4 @NC) with high Na-ion storage capacity and unprecedented long-life cycling stability are reported in this paper. The Co 3 O 4 @NC was derived from a metal – organic framework ZIF-67, where the Co ions and organic linkers were, respectively, converted to Co 3 O 4 nanoparticle cores and nitrogen-doped carbon shells through a controlled two-step annealing process. The Co 3 O 4 @NC shows a porous nature with a surface area of 101 m 2 g 1 . When applied as an anode for sodium ion batteries …


3d Binder-Free Mose2 Nanosheets/Carbon Cloth Electrodes For Efficient And Stable Hydrogen Evolution Prepared By Simple Electrophoresis Deposition Strategy, Yundan Liu, Long Ren, Zhen Zhang, Xiang Qi, Hongxing Li, Jianxin Zhong Jan 2016

3d Binder-Free Mose2 Nanosheets/Carbon Cloth Electrodes For Efficient And Stable Hydrogen Evolution Prepared By Simple Electrophoresis Deposition Strategy, Yundan Liu, Long Ren, Zhen Zhang, Xiang Qi, Hongxing Li, Jianxin Zhong

Australian Institute for Innovative Materials - Papers

We successfully developed a simple electrophoretic deposition (EPD) method to decorate the MoSe2 nanosheets on the carbon fiber surface of carbon cloth (MoSe2/CC). With this process, MoSe2 nanosheets can be uniformly and tightly deposited on this flexible conductor to form a 3D binder-free electrode for hydrogen evolution reaction (HER). The film thickness can also be controlled by the EPD time. Directly used as binder-free electrodes for hydrogen evolution reaction, the as-prepared 3D MoSe2/CC samples exhibit excellent catalytic activity in an acidic electrolyte (21 mA/cm2 at an over-potential of 250 mV). Variation of MoSe2 nanosheets film thickness in the electrodes could …


Stretchable, Weavable Coiled Carbon Nanotube/Mno2/Polymer Fiber Solid-State Supercapacitors, Changsoon Choi, Shi Hyeong Kim, Hyeon Jun Sim, Jae Ah Lee, A Young Choi, Youn Tae Kim, Xavier Lepro, Geoffrey M. Spinks, Ray H. Baughman, Seon Jeong Kim Jan 2015

Stretchable, Weavable Coiled Carbon Nanotube/Mno2/Polymer Fiber Solid-State Supercapacitors, Changsoon Choi, Shi Hyeong Kim, Hyeon Jun Sim, Jae Ah Lee, A Young Choi, Youn Tae Kim, Xavier Lepro, Geoffrey M. Spinks, Ray H. Baughman, Seon Jeong Kim

Australian Institute for Innovative Materials - Papers

Fiber and yarn supercapacitors that are elastomerically deformable without performance loss are sought for such applications as power sources for wearable electronics, micro-devices, and implantable medical devices. Previously reported yarn and fiber supercapacitors are expensive to fabricate, difficult to upscale, or non-stretchable, which limits possible use. The elastomeric electrodes of the present solid-state supercapacitors are made by using giant inserted twist to coil a nylon sewing thread that is helically wrapped with a carbon nanotube sheet, and then electrochemically depositing pseudocapacitive MnO2 nanofibers. These solid-state supercapacitors decrease capacitance by less than 15% when reversibly stretched by 150% in the …


Contribution Of Radicals And Ions In Catalyzed Growth Of Single-Walled Carbon Nanotubes From Low-Temperature Plasmas, Z Marvi, S Xu, G Foroutan, Kostya Ostrikov Jan 2015

Contribution Of Radicals And Ions In Catalyzed Growth Of Single-Walled Carbon Nanotubes From Low-Temperature Plasmas, Z Marvi, S Xu, G Foroutan, Kostya Ostrikov

Australian Institute for Innovative Materials - Papers

The growth kinetics of single-walled carbon nanotubes (SWCNTs) in a low-temperature, low-pressure reactive plasma is investigated using a multiscale numerical simulation, including the plasma sheath and surface diffusion modules. The plasma-related effects on the characteristics of SWCNT growth are studied. It is found that in the presence of reactive radicals in addition to energetic ions inside the plasma sheath area, the effective carbon flux, and the growth rate of SWCNT increase. It is shown that the concentration of atomic hydrogen and hydrocarbon radicals in the plasma plays an important role in the SWCNT growth. The effect of the effective carbon …


Dual Yolk-Shell Structure Of Carbon And Silica-Coated Silicon For High-Performance Lithium-Ion Batteries, L Y. Yang, H Z. Li, Jun Liu, Ziqi Sun, S S. Tang, M Lei Jan 2015

Dual Yolk-Shell Structure Of Carbon And Silica-Coated Silicon For High-Performance Lithium-Ion Batteries, L Y. Yang, H Z. Li, Jun Liu, Ziqi Sun, S S. Tang, M Lei

Australian Institute for Innovative Materials - Papers

Silicon batteries have attracted much attention in recent years due to their high theoretical capacity, although a rapid capacity fade is normally observed, attributed mainly to volume expansion during lithiation. Here, we report for the first time successful synthesis of Si/void/SiO2/void/C nanostructures. The synthesis strategy only involves selective etching of SiO2 in Si/SiO2/C structures with hydrofluoric acid solution. Compared with reported results, such novel structures include a hard SiO2-coated layer, a conductive carbon-coated layer, and two internal void spaces. In the structures, the carbon can enhance conductivity, the SiO2 layer has mechanically …


Uniform Yolk-Shell Iron Sulfide-Carbon Nanospheres For Superior Sodium-Iron Sulfide Batteries, Yunxiao Wang, Jianping Yang, Shulei Chou, Hua-Kun Liu, Weixian Zhang, Dongyuan Zhao, S X. Dou Jan 2015

Uniform Yolk-Shell Iron Sulfide-Carbon Nanospheres For Superior Sodium-Iron Sulfide Batteries, Yunxiao Wang, Jianping Yang, Shulei Chou, Hua-Kun Liu, Weixian Zhang, Dongyuan Zhao, S X. Dou

Australian Institute for Innovative Materials - Papers

Sodium-metal sulfide battery holds great promise for sustainable and cost-effective applications. Nevertheless, achieving high capacity and cycling stability remains a great challenge. Here, uniform yolk-shell iron sulfide-carbon nanospheres have been synthesized as cathode materials for the emerging sodium sulfide battery to achieve remarkable capacity of ∼545 mA h g-1 over 100 cycles at 0.2 C (100 mA g-1), delivering ultrahigh energy density of ∼438 Wh kg-1. The proven conversion reaction between sodium and iron sulfide results in high capacity but severe volume changes. Nanostructural design, including of nanosized iron sulfide yolks (∼170 nm) with porous carbon shells (∼30 nm) and …


High Acetic Acid Production Rate Obtained By Microbial Electrosynthesis From Carbon Dioxide, Ludovic Jourdin, Timothy Grieger, Juliette Monetti, Victoria Flexer, Stefano Freguia, Yang Lu, Jun Chen, Mark S. Romano, Gordon G. Wallace, Jurg Keller Jan 2015

High Acetic Acid Production Rate Obtained By Microbial Electrosynthesis From Carbon Dioxide, Ludovic Jourdin, Timothy Grieger, Juliette Monetti, Victoria Flexer, Stefano Freguia, Yang Lu, Jun Chen, Mark S. Romano, Gordon G. Wallace, Jurg Keller

Australian Institute for Innovative Materials - Papers

High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m-2 and an acetic acid production rate of 685 ± 30 (g m-2 day-1) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final …


One Dimensional Graphitic Carbon Nitrides As Effective Metal-Free Oxygen Reduction Catalysts, Muhammad Nawaz Tahir, Nasir Mahmood, Jinghan Zhu, Asif Mahmood, Faheem K. Butt, Syed Rizwan, Imran Aslam, M Tanveer, Faryal Idrees, Imran Shakir, Chuanbao Cao, Yanglong Hou Jan 2015

One Dimensional Graphitic Carbon Nitrides As Effective Metal-Free Oxygen Reduction Catalysts, Muhammad Nawaz Tahir, Nasir Mahmood, Jinghan Zhu, Asif Mahmood, Faheem K. Butt, Syed Rizwan, Imran Aslam, M Tanveer, Faryal Idrees, Imran Shakir, Chuanbao Cao, Yanglong Hou

Australian Institute for Innovative Materials - Papers

To explore the effect of morphology on catalytic properties of graphitic carbon nitride (GCN), we have studied oxygen reduction reaction (ORR) performance of two different morphologies of GCN in alkaline media. Among both, tubular GCN react with dissolved oxygen in the ORR with an onset potential close to commercial Pt/C. Furthermore, the higher stability and excellent methanol tolerance of tubular GCN compared to Pt/C emphasizes its suitability for fuel cells.


Yolk-Shell Silicon-Mesoporous Carbon Anode With Compact Solid Electrolyte Interphase Film For Superior Lithium-Ion Batteries, Jianping Yang, Yunxiao Wang, Shulei Chou, Renyuan Zhang, Yanfei Xu, Jianwei Fan, Weixian Zhang, Hua-Kun Liu, Dongyuan Zhao, S X. Dou Jan 2015

Yolk-Shell Silicon-Mesoporous Carbon Anode With Compact Solid Electrolyte Interphase Film For Superior Lithium-Ion Batteries, Jianping Yang, Yunxiao Wang, Shulei Chou, Renyuan Zhang, Yanfei Xu, Jianwei Fan, Weixian Zhang, Hua-Kun Liu, Dongyuan Zhao, S X. Dou

Australian Institute for Innovative Materials - Papers

Silicon as an electrode suffers from short cycling life, as well as unsatisfactory rate-capability caused by the large volume expansion (~400%) and the consequent structural degradation during lithiation/delithiation processes. Here, we have engineered unique void-containing mesoporous carbon-encapsulated commercial silicon nanoparticles (NPs) in yolk-shell structures. In this design, the silicon NPs yolk are wrapped into open and accessible mesoporous carbon shells, the void space between yolk and shell provides enough room for Si expansion, meanwhile, the porosity of carbon shell enables fast transport of Li+ ions between electrolyte and silicon. Our ex-situ characterization clearly reveals for the first time that a …


A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo Jan 2015

A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel strategy to improve the electrochemical performance of a germanium anode is proposed via encapsulating germanium nanoparticles in carbon nanoboxes by carbon coating the precursor, germanium dioxide cubes, and then subjecting them to a reduction treatment. The complete and robust carbon boxes are shown to not only provide extra void space for the expansion of germanium nanoparticles after lithium insertion but also offer a large reactive area and reduced distance for the lithium diffusion. Furthermore, the thus-obtained composite, composed of densely stacked carbon nanoboxes encapsulating germanium nanoparticles (germanium at carbon cubes (Ge at CC)), exhibits a high tap density …


Hollow Carbon Spheres With Encapsulated Germanium As An Anode Material For Lithium Ion Batteries, Dan Li, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo Jan 2015

Hollow Carbon Spheres With Encapsulated Germanium As An Anode Material For Lithium Ion Batteries, Dan Li, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel composite consisting of hollow carbon spheres with encapsulated germanium (Ge@HCS) was synthesized by introducing a germanium precursor into the porous-structured hollow carbon spheres. The carbon spheres not only function as a scaffold to hold the germanium and thus maintain the structural integrity of the composite, but also increase the electrical conductivity. The voids and vacancies that are formed after the reduction of germanium dioxide to germanium provide free space for accommodating the volume changes during discharging-charging processes, thus preventing pulverization. The obtained Ge@HCS composite exhibits excellent lithium storage performance, as revealed by electrochemical evaluation.


Significantly Enhanced Critical Current Density In Nano-Mgb2 Grains Rapidly Formed At Low Temperature With Homogeneous Carbon Doping, Yongchang Liu, Feng Lan, Zongqing Ma, Ning Chen, Huijun Li, Shaon Barua, Dipakkumar Patel, Md S. Hossain, S Acar, Jung Ho Kim, S X. Dou Jan 2015

Significantly Enhanced Critical Current Density In Nano-Mgb2 Grains Rapidly Formed At Low Temperature With Homogeneous Carbon Doping, Yongchang Liu, Feng Lan, Zongqing Ma, Ning Chen, Huijun Li, Shaon Barua, Dipakkumar Patel, Md S. Hossain, S Acar, Jung Ho Kim, S X. Dou

Australian Institute for Innovative Materials - Papers

High performance MgB2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB2 grains with a high level of homogeneous carbon doping were formed in these MgB2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (Jc) in the as-prepared samples. In particular, the value of Jc for the carbon-coated (Mg …


Efficient, Absorption-Powered Artificial Muscles Based On Carbon Nanotube Hybrid Yarns, Marcio D. Lima, Mohammad W. Hussain, Geoffrey M. Spinks, Sina Naficy, Daniela Hagenasr, Julia S. Bykova, Derrick Tolly, Ray H. Baughman Jan 2015

Efficient, Absorption-Powered Artificial Muscles Based On Carbon Nanotube Hybrid Yarns, Marcio D. Lima, Mohammad W. Hussain, Geoffrey M. Spinks, Sina Naficy, Daniela Hagenasr, Julia S. Bykova, Derrick Tolly, Ray H. Baughman

Australian Institute for Innovative Materials - Papers

A new type of absorption-powered artificial muscle provides high performance without needing a temperature change. These muscles, comprising coiled carbon nanotube fibers infiltrated with silicone rubber, can contract up to 50% to generate up to 1.2 kJ kg−1. The drive mechanism for actuation is the rubber swelling during exposure to a nonpolar solvent. Theoretical energy efficiency conversion can be as high as 16%.


Nano-Carbon Electrodes For Thermal Energy Harvesting, Mark S. Romano, Joselito M. Razal, Dennis Antiohos, Gordon G. Wallace, Jun Chen Jan 2015

Nano-Carbon Electrodes For Thermal Energy Harvesting, Mark S. Romano, Joselito M. Razal, Dennis Antiohos, Gordon G. Wallace, Jun Chen

Australian Institute for Innovative Materials - Papers

Thermogalvanic cells are capable of converting waste heat (generated as a by-product of almost all human activity) to electricity. These devices may alleviate the problems associated with the use of fossil fuels to meet the world's current demand for energy. This review discusses the developments in thermogalvanic systems attained through the use of nano-carbons as the electrode materials. Advances in cell design and electrode configuration that improve performance of these thermo converters and make them applicable in a variety of environments are also summarized. It is the aim of this review to act as a channel for further developments in …


Hierarchically Porous Carbon-Zirconium Carbide Spheres As Potentially Reusable Transmutation Targets, Nicholas Scales, Jun Chen, Tracey L. Hanley, Daniel P. Riley, Gregory R. Lumpkin, Vittorio Luca Jan 2015

Hierarchically Porous Carbon-Zirconium Carbide Spheres As Potentially Reusable Transmutation Targets, Nicholas Scales, Jun Chen, Tracey L. Hanley, Daniel P. Riley, Gregory R. Lumpkin, Vittorio Luca

Australian Institute for Innovative Materials - Papers

The preparation of hierarchically porous phase-pure carbon-zirconium carbide spheres with surface areas upwards of 70 m2/g and diameters in the 1-2 mm range has been achieved. The zirconium carbide beads were prepared through carbothermal reduction of polyacrylonitrile-zirconium composites prepared via three different routes including infiltration of a zirconium precursor into preformed polyacrylonitrile (PAN) beads and two one-pot co-precipitation methods. Depending on the route used to prepare the composites, relatively high surface area phase-pure zirconium carbides with the radial macroporous internal structure of the PAN template could be prepared. The adsorption of the elements U, Mo, Cs and Sr …


Carbon Fibre Microelectrodes For Neuroscience Applications, Jian Fang, Zhigang Xie, Gordon G. Wallace, Xungai Wang Jan 2015

Carbon Fibre Microelectrodes For Neuroscience Applications, Jian Fang, Zhigang Xie, Gordon G. Wallace, Xungai Wang

Australian Institute for Innovative Materials - Papers

Microelectrodes have shown outstanding performance in neural signal recording, neural stimulation and electrochemical sensing1,2. Compared with their micro-sized counterparts, microelectrodes normally exhibit improved signal-to-noise ratio, fast response time and can work with limited sample volumes. Microelectrodes are required to have good biocompatibility, low electrical impedance and long-term stability in many biomedical applications. Carbon fibres are manufactured from polymeric precursor fibres through carbonization, and high carbon content makes carbon fibres electrically conductive, corrosion resistant, biologically safe and inert3. Therefore, carbon fibre has been considered as an ideal candidate for making microelectrodes.

In this work, single carbon fibres were loaded into capillary …


Large-Scale Synthesis Of Ordered Mesoporous Carbon Fiber And Its Application As Cathode Material For Lithium-Sulfur Batteries, Hongqiang Wang, Chaofeng Zhang, Zhixin Chen, Hua-Kun Liu, Zaiping Guo Jan 2015

Large-Scale Synthesis Of Ordered Mesoporous Carbon Fiber And Its Application As Cathode Material For Lithium-Sulfur Batteries, Hongqiang Wang, Chaofeng Zhang, Zhixin Chen, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel type of one-dimensional ordered mesoporous carbon fiber has been prepared via the electrospinning technique by using resol as the carbon source and triblock copolymer Pluronic F127 as the template. Sulfur is then encapsulated in this ordered mesoporous carbon fibers by a simple thermal treatment. The interwoven fibrous nanostructure has favorably mechanical stability and can provide an effective conductive network for sulfur and polysulfides during cycling. The ordered mesopores can also restrain the diffusion of long-chain polysulfides. The resulting ordered mesoporous carbon fiber sulfur (OMCF-S) composite with 63% S exhibits high reversible capacity, good capacity retention and enhanced rate …