Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 1511

Full-Text Articles in Physical Sciences and Mathematics

Electrical Stimulation-Induced Osteogenesis Of Human Adipose Derived Stem Cells Using A Conductive Graphene-Cellulose Scaffold, Jianfeng Li, Xiao Liu, Jeremy Micah Crook, Gordon G. Wallace Jan 2020

Electrical Stimulation-Induced Osteogenesis Of Human Adipose Derived Stem Cells Using A Conductive Graphene-Cellulose Scaffold, Jianfeng Li, Xiao Liu, Jeremy Micah Crook, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

The versatile properties of graphene-based materials are enabling various tissue regeneration, towards meeting an ever increasing demand for replacement tissues due to injury through trauma and disease. In particular, an innate ability for graphene to promote osteogenic differentiation of stem cells, combined with the potential to enhance the biological activity of cells through electrical stimulation (ES) using graphene, supports its use for osteoinduction or reconstruction. In this paper, we describe a miniaturized graphene-cellulose (G-C) scaffold-based device that incorporates electroactive G-C 'paper' within a polystyrene chamber for concomitant cell culture and ES. The G-C electrodes possessed lower impedance and higher charge ...


Multiphase Identification In Ni-Pbte Contacts By Ebsd And Aberration-Corrected Stem, Xavier Reales Ferreres, Gilberto Casillas, Sima Aminorroaya-Yamini, Azdiar Adil Gazder Jan 2020

Multiphase Identification In Ni-Pbte Contacts By Ebsd And Aberration-Corrected Stem, Xavier Reales Ferreres, Gilberto Casillas, Sima Aminorroaya-Yamini, Azdiar Adil Gazder

Australian Institute for Innovative Materials - Papers

EBSD in combination with aberration-corrected STEM is used to study the interfacial layer forming at Ni electrode - PbTe thermoelectric material interfaces. Contrary to previous studies, both orthorhombic and monoclinic phases are identified within the interfacial layer. EBSD and STEM data at interphase boundaries demonstrate an approximately smooth transition from orthorhombic to monoclinic phase with almost no crystal defects due to the small differences in lattice parameters and the prevalence of one of two previously unknown orientation relationships between the phases. Moreover, the presence of special boundaries resulting in orientation domains within both phases throughout the interfacial nickel telluride layer needs ...


Electrochemical And Optical Aspects Of Cobalt Meso-Carbazole Substituted Porphyrin Complexes, Katarzyna Laba, Mieczyslaw Lapkowski, David L. Officer, Pawel W. Wagner, Przemyslaw Data Jan 2020

Electrochemical And Optical Aspects Of Cobalt Meso-Carbazole Substituted Porphyrin Complexes, Katarzyna Laba, Mieczyslaw Lapkowski, David L. Officer, Pawel W. Wagner, Przemyslaw Data

Australian Institute for Innovative Materials - Papers

A series of cobalt (II) porphyrin complexes modified with carbazole rings at one or more meso positions of the macrocycle were synthesized and characterized as to their spectroscopic and basic electrochemical properties in non-aqueous media. The effect of the number and position (syn and anti) of carbazole groups on the complexes properties were investigated. The comparison was made to cobalt (II) porphyrin containing mesityl groups at the meso-positions. The relation between the site of redox processes in cobalt meso-carbazole substituted porphyrins were analysed. It was shown that the conjugated π-ring system of the porphyrin macrocycle, the cobalt central metal ion ...


Alkali-Metal Sulfide As Cathodes Toward Safe And High-Capacity Metal (M = Li, Na, K) Sulfur Batteries, Huiling Yang, Binwei Zhang, Yunxiao Wang, Konstantin K. Konstantinov, Hua-Kun Liu, Shi Xue Dou Jan 2020

Alkali-Metal Sulfide As Cathodes Toward Safe And High-Capacity Metal (M = Li, Na, K) Sulfur Batteries, Huiling Yang, Binwei Zhang, Yunxiao Wang, Konstantin K. Konstantinov, Hua-Kun Liu, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

© 2020 Wiley-VCH GmbH Rechargeable alkali-metal–sulfur (M–S) batteries, because of their high energy density and low cost, have been recognized as one of the most promising next-generation energy storage technologies. Nevertheless, the dissolution of metal polysulfides in organic liquid electrolytes and safety issues related to the metal anodes are greatly hindering the development of the M–S batteries. Alkali-metal sulfides (M2Sx) are emerging as cathode materials, which can pair with various safe nonalkali-metal anodes, such as silicon and tin. As a result, the combined M2Sx cathode-based M–S batteries can achieve high capacity as well as safety, thereby providing ...


Ultrafast Electron Transport In Metallic Antiferromagnetic Mn2au Thin Films Probed By Terahertz Spectroscopy, Zuanming Jin, Shunyi Ruan, Xiaofeng Zhou, Bangju Song, Cheng Song, Xianzhe Chen, Feng Pan, Yan Peng, C Zhang, Guohong Ma, Yiming Zhu, Songlin Zhuang Jan 2020

Ultrafast Electron Transport In Metallic Antiferromagnetic Mn2au Thin Films Probed By Terahertz Spectroscopy, Zuanming Jin, Shunyi Ruan, Xiaofeng Zhou, Bangju Song, Cheng Song, Xianzhe Chen, Feng Pan, Yan Peng, C Zhang, Guohong Ma, Yiming Zhu, Songlin Zhuang

Australian Institute for Innovative Materials - Papers

The ultrafast electron transport is central to the requirement of all-electrically controlled spintronics in metallic collinear antiferromagnetic (AFM) Mn2Au thin films within the terahertz (THz) range. Here we use the THz time-domain spectroscopy to measure the conductivity spectra of Mn2Au thin films with different thicknesses and temperatures. We demonstrate an onset of carrier localization in Mn2Au with decreasing the film thickness from 15 to 5 nm. By using optical pump-THz probe spectroscopy, we found the surface trapping states in the thinnest Mn2Au film limit its photoconductivity significantly. The DC conductivity and scattering time become larger and longer with decreasing temperature ...


3d Printed Soft Pneumatic Bending Sensing Chambers For Bilateral And Remote Control Of Soft Robotic Systems, Charbel Tawk, Marc In Het Panhuis, Geoffrey M. Spinks, Gursel Alici Jan 2020

3d Printed Soft Pneumatic Bending Sensing Chambers For Bilateral And Remote Control Of Soft Robotic Systems, Charbel Tawk, Marc In Het Panhuis, Geoffrey M. Spinks, Gursel Alici

Australian Institute for Innovative Materials - Papers

© 2020 IEEE. This work reports on soft pneumatic bending sensing chambers that are directly 3D printed without requiring any support material and postprocessing using a low-cost and open-source fused deposition modeling (FDM) 3D printer and a commercially available soft thermoplastic polyurethane (TPU). These bending sensing chambers have multiple advantages including very fast response to any change in their internal volume, linearity, negligible hysteresis, repeatability, reliability, stability over time, long lifetime and very low power consumption. The performance of these soft sensing chambers is accurately predicted and optimized using finite element modeling (FEM) and a hyperelastic material model for the TPU ...


Topographical And Compositional Engineering Of Core-Shell Ni@Pt Orr Electro-Catalysts, Gerard Leteba, David R. G Mitchell, Pieter Levecque, Eric Van Steen, Candace Lang Jan 2020

Topographical And Compositional Engineering Of Core-Shell Ni@Pt Orr Electro-Catalysts, Gerard Leteba, David R. G Mitchell, Pieter Levecque, Eric Van Steen, Candace Lang

Australian Institute for Innovative Materials - Papers

© 2020 The Royal Society of Chemistry. Complex faceted geometries and compositional anisotropy in alloy nanoparticles (NPs) can enhance catalytic performance. We report on the preparation of binary PtNi NPs via a co-thermolytic approach in which we optimize the synthesis variables, which results in significantly improved catalytic performance. We used scanning transmission electron microscopy to characterise the range of morphologies produced, which included spherical and concave cuboidal core-shell structures. Electrocatalytic activity was evaluated using a rotating disc electrode (1600 rpm) in 0.1 M HClO4; the electrocatalytic performance of these Ni@Pt NPs showed significant (∼11-fold) improvement compared to a commercial ...


Highly Flexible Reduced Graphene Oxide@Polypyrrole-Polyethylene Glycol Foam For Supercapacitors, Chaoyue Cai, Jialong Fu, Chengyan Zhang, Cheng Wang, Rui Sun, Shufang Guo, Fan Zhang, Mingyan Wang, Yuqing Liu, Jun Chen Jan 2020

Highly Flexible Reduced Graphene Oxide@Polypyrrole-Polyethylene Glycol Foam For Supercapacitors, Chaoyue Cai, Jialong Fu, Chengyan Zhang, Cheng Wang, Rui Sun, Shufang Guo, Fan Zhang, Mingyan Wang, Yuqing Liu, Jun Chen

Australian Institute for Innovative Materials - Papers

© 2020 The Royal Society of Chemistry. A flexible and free-standing 3D reduced graphene oxide@polypyrrole-polyethylene glycol (RGO@PPy-PEG) foam was developed for wearable supercapacitors. The device was fabricated sequentially, beginning with the electrodeposition of PPy in the presence of a PEG-borate on a sacrificial Ni foam template, followed by a subsequent GO wrapping and chemical reduction process. The 3D RGO@PPy-PEG foam electrode showed excellent electrochemical properties with a large specific capacitance of 415 F g-1 and excellent long-term stability (96% capacitance retention after 8000 charge-discharge cycles) in a three electrode configuration. An assembled (two-electrode configuration) symmetric supercapacitor using RGO ...


Artificial Muscles From Hybrid Carbon Nanotube-Polypyrrole-Coated Twisted And Coiled Yarns, Shazed Aziz, Jose Martinez, Javad Foroughi, Geoffrey M. Spinks, Edwin W. Jager Jan 2020

Artificial Muscles From Hybrid Carbon Nanotube-Polypyrrole-Coated Twisted And Coiled Yarns, Shazed Aziz, Jose Martinez, Javad Foroughi, Geoffrey M. Spinks, Edwin W. Jager

Australian Institute for Innovative Materials - Papers

Electrochemically or electrothermally driven twisted/coiled carbon nanotube (CNT) yarn actuators are interesting artificial muscles for wearables as they can sustain high stress. However, due to high fabrication costs, these yarns have limited their application in smart textiles. An alternative approach is to use off-the-shelf yarns and coat them with conductive polymers that deliver high actuation properties. Here, novel hybrid textile yarns are demonstrated that combine CNT and an electroactive polypyrrole coating to provide both high strength and good actuation properties. CNT-coated polyester yarns are twisted and coiled and subjected to electrochemical coating of polypyrrole to obtain the hierarchical soft ...


Improved Na Storage And Coulombic Efficiency In Tip2o7@C Microflowers For Sodium Ion Batteries, Jun Pan, Nana Wang, Lili Li, Feng Zhang, Zhenjie Cheng, Yanlu Li, Jian Yang, Yitai Qian Jan 2020

Improved Na Storage And Coulombic Efficiency In Tip2o7@C Microflowers For Sodium Ion Batteries, Jun Pan, Nana Wang, Lili Li, Feng Zhang, Zhenjie Cheng, Yanlu Li, Jian Yang, Yitai Qian

Australian Institute for Innovative Materials - Papers

© 2020, Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature. Ti-based anode materials in sodium ion batteries have attracted extensive interests due to its abundant resources, low toxicity, easy synthesis and long cycle life. However, low Coulombic efficiency and limited specific capacity affect their applications. Here, cubic-phase TiP2O7 is examined as anode materials, using in-situ/ex-situ characterization techniques. It is concluded that the redox reactions of Ti4+/Ti3+ and Ti3+/Ti0 consecutively occur during the discharge/charge processes, both of which are highly reversible. These reactions make the specific capacity of TiP2O7 even higher than the case of ...


Constructing Phase Boundary In Agnbo3 Antiferroelectrics: Pathway Simultaneously Achieving High Energy Density And Efficiency, Nengneng Luo, Kai Han, Matthew Cabral, Xiaozhou Liao, Shujun Zhang, Changzhong Liao, Guangzu Zhang, Xiyong Chen, Qin Feng, Jing Li, Yuezhou Wei Jan 2020

Constructing Phase Boundary In Agnbo3 Antiferroelectrics: Pathway Simultaneously Achieving High Energy Density And Efficiency, Nengneng Luo, Kai Han, Matthew Cabral, Xiaozhou Liao, Shujun Zhang, Changzhong Liao, Guangzu Zhang, Xiyong Chen, Qin Feng, Jing Li, Yuezhou Wei

Australian Institute for Innovative Materials - Papers

© 2020, The Author(s). Dielectric capacitors with high energy storage density (Wrec) and efficiency (η) are in great demand for high/pulsed power electronic systems, but the state-of-the-art lead-free dielectric materials are facing the challenge of increasing one parameter at the cost of the other. Herein, we report that high Wrec of 6.3 J cm-3 with η of 90% can be simultaneously achieved by constructing a room temperature M2–M3 phase boundary in (1-x)AgNbO3-xAgTaO3 solid solution system. The designed material exhibits high energy storage stability over a wide temperature range of 20–150 °C and excellent cycling reliability ...


Highly Ordered Macroporous Dual-Element-Doped Carbon From Metal-Organic Frameworks For Catalyzing Oxygen Reduction, Wei Xia, Michelle Hunter, Jiayu Wang, Guoxun Zhu, Sarah Warren, Yingji Zhao, Yoshio Bando, Debra Searles, Yusuke Yamauchi, Jing Tang Jan 2020

Highly Ordered Macroporous Dual-Element-Doped Carbon From Metal-Organic Frameworks For Catalyzing Oxygen Reduction, Wei Xia, Michelle Hunter, Jiayu Wang, Guoxun Zhu, Sarah Warren, Yingji Zhao, Yoshio Bando, Debra Searles, Yusuke Yamauchi, Jing Tang

Australian Institute for Innovative Materials - Papers

© The Royal Society of Chemistry 2020. Multiple heteroatom-doped carbons with 3D ordered macro/meso-microporous structures have not been realized by simple carbonization of metal-organic frameworks (MOFs). Herein, ordered macroporous phosphorus- and nitrogen-doped carbon (M-PNC) is prepared successfully by carbonization of double-solvent-induced MOF/polystyrene sphere (PS) precursors accompanied with spontaneous removal of the PS template, followed by post-doping. M-PNC shows a high specific surface area of 837 m2g−1, nitrogen doping of 3.17 at%, and phosphorus doping of 1.12 at%. Thanks to the hierarchical structure, high specific surface area, and multiple heteroatom-doping, M-PNC exhibits unusual catalytic activity as an ...


Tunable Magnetic Anisotropy And Dzyaloshinskii-Moriya Interaction In An Ultrathin Van Der Waals Fe3gete2/In2se3 Heterostructure, Dong Chen, Wei Sun, Hang Li, Jian Li Wang, Yuanxu Wang Jan 2020

Tunable Magnetic Anisotropy And Dzyaloshinskii-Moriya Interaction In An Ultrathin Van Der Waals Fe3gete2/In2se3 Heterostructure, Dong Chen, Wei Sun, Hang Li, Jian Li Wang, Yuanxu Wang

Australian Institute for Innovative Materials - Papers

© Copyright © 2020 Chen, Sun, Li, Wang and Wang. The promise of future spintronic devices with nanoscale dimension, high-density, and low-energy consumption motivates the search for van der Waals heterostructure that stabilize topologically protected whirling spin textures such as magnetic skyrmions and domain walls. To translate these compelling features into practical devices, a key challenge lies in achieving effective manipulation of the magnetic anisotropy energy and the Dzyaloshinskii-Moriya (DM) interaction, the two key parameters that determine skyrmions. Through the first-principles calculation, we demonstrate that the polarization-induced broken inversion symmetry in the two-dimensional Fe3GeTe2/In2Se3 multiferroic heterostructure does cause an interfacial DM ...


Lead-Free Antiferroelectric Agnbo3: Phase Transitions And Structure Engineering For Dielectric Energy Storage Applications, Jing Gao, Qiang Li, Shujun Zhang, Jing-Feng Li Jan 2020

Lead-Free Antiferroelectric Agnbo3: Phase Transitions And Structure Engineering For Dielectric Energy Storage Applications, Jing Gao, Qiang Li, Shujun Zhang, Jing-Feng Li

Australian Institute for Innovative Materials - Papers

© 2020 Author(s). The development of electronic materials for storing electrical energy is a thriving research field, where the materials used in batteries, supercapacitors, dielectric capacitors have attracted extensive interest in last decades. The dielectric capacitors showing unique characteristics such as high power density and large charge/discharge rate have been actively studied, where the antiferroelectrics demonstrate great potentials for dielectric energy storage applications by storing and releasing energy upon a reversible electric-field induced antiferroelectric-ferroelectric phase transition. Recently, lead-free antiferroelectric AgNbO3 has emerged as a promising candidate to substitute conventional lead-based antiferroelectrics (such as PbZrO3) in energy storage applications. The ...


Promoted Photocharge Separation In 2d Lateral Epitaxial Heterostructure For Visible-Light-Driven Co2 Photoreduction, Li Wang, Xue Zhao, Dongdong Lv, Chuangwei Liu, Weihong Lai, Chunyi Sun, Zhongmin Su, Xun Xu, Weichang Hao, Shi Xue Dou, Yi Du Jan 2020

Promoted Photocharge Separation In 2d Lateral Epitaxial Heterostructure For Visible-Light-Driven Co2 Photoreduction, Li Wang, Xue Zhao, Dongdong Lv, Chuangwei Liu, Weihong Lai, Chunyi Sun, Zhongmin Su, Xun Xu, Weichang Hao, Shi Xue Dou, Yi Du

Australian Institute for Innovative Materials - Papers

Photocarrier recombination remains a big barrier for the improvement of solar energy conversion efficiency. For 2D materials, construction of heterostructures represents an efficient strategy to promote photoexcited carrier separation via an internal electric field at the heterointerface. However, due to the difficulty in seeking two components with suitable crystal lattice mismatch, most of the current 2D heterostructures are vertical heterostructures and the exploration of 2D lateral heterostructures is scarce and limited. Here, lateral epitaxial heterostructures of BiOCl @ Bi2O3 at the atomic level are fabricated via sonicating-assisted etching of Cl in BiOCl. This unique lateral heterostructure expedites photoexcited ...


Anisotropic And Extreme Magnetoresistance In The Magnetic Semimetal Candidate Erbium Monobismuthide, L Fan, F Tang, W Meng, W Zhao, L Zhang, Z Han, Bo Qian, X Jiang, X M. Zhang, Y Fang Jan 2020

Anisotropic And Extreme Magnetoresistance In The Magnetic Semimetal Candidate Erbium Monobismuthide, L Fan, F Tang, W Meng, W Zhao, L Zhang, Z Han, Bo Qian, X Jiang, X M. Zhang, Y Fang

Australian Institute for Innovative Materials - Papers

Rare-earth monopnictides display rich physical behaviors, featuring most notably spin and orbital orders in their ground state. Here, we grow ErBi single crystal and study its magnetic, thermal, and electrical properties. An analysis of the magnetic entropy and magnetization indicates that the weak magnetic anisotropy in ErBi possibly derives from the mixing effect, namely the anisotropic ground state of Er3+(4f11) mingles with the isotropic excited state through exchange interaction. At low temperature, an extremely large magnetoresistance (∼104%) with a parabolic magnetic-field dependence is observed, which can be ascribed to the nearly perfect electron-hole compensation and ultrahigh carrier mobility. When ...


Low-Cost Efficient Magnetic Adsorbent For Phosphorus Removal From Water, Liting Zhang, Hongbing Dan, Orphe Bukasa, Linlin Song, Yin Liu, Liang Wang, Jianjun Li Jan 2020

Low-Cost Efficient Magnetic Adsorbent For Phosphorus Removal From Water, Liting Zhang, Hongbing Dan, Orphe Bukasa, Linlin Song, Yin Liu, Liang Wang, Jianjun Li

Australian Institute for Innovative Materials - Papers

Adsorption using magnetic adsorbents makes the phosphorus removal from water simple and efficient. However, most of the reported magnetic adsorbents use chemically synthesized nanoparticles as magnetic cores, which are expensive and environmentally unfriendly. Replacing the nanomagnetic cores by cheap and green magnetic materials is essential for the wide application of this technique. In this paper, coal-fly-ash magnetic spheres (MSs) were processed to produce a cheap and eco-friendly magnetic core. A magnetic adsorbent, ZrO2 coated ball-milled MS (BMS@ZrO2), was prepared through a simple chemical precipitation method. Careful structural investigations indicate that a multipore structural amorphous ZrO2 layer has grown on ...


Nanofibers-Based Piezoelectric Energy Harvester For Self-Powered Wearable Technologies, Fatemeh Mokhtari, Mahnaz Shamshirsaz, Masoud Latifi, Javad Foroughi Jan 2020

Nanofibers-Based Piezoelectric Energy Harvester For Self-Powered Wearable Technologies, Fatemeh Mokhtari, Mahnaz Shamshirsaz, Masoud Latifi, Javad Foroughi

Australian Institute for Innovative Materials - Papers

The demands for wearable technologies continue to grow and novel approaches for powering these devices are being enabled by the advent of new energy materials and novel manufacturing strategies. In addition, decreasing the energy consumption of portable electronic devices has created a huge demand for the development of cost-effective and environment friendly alternate energy sources. Energy harvesting materials including piezoelectric polymer with its special properties make this demand possible. Herein, we develop a flexible and lightweight nanogenerator package based on polyvinyledene fluoride (PVDF)/LiCl electrospun nanofibers. The piezoelectric performance of the developed nanogenator is investigated to evaluate effect of the ...


Creating Thin Magnetic Layers At The Surface Of Sb2te3 Topological Insulators Using A Low-Energy Chromium Ion Beam, David L. Cortie, Weiyao Zhao, Zengji Yue, Zhi Li, Abuduliken Bake, Olexandra Marenych, Zeljko Pastuovic, Mitchell John Bromley Nancarrow, Zhaoming Zhang, Dong-Chen Qi, Peter Evans, D Rg Mitchell, Xiaolin Wang Jan 2020

Creating Thin Magnetic Layers At The Surface Of Sb2te3 Topological Insulators Using A Low-Energy Chromium Ion Beam, David L. Cortie, Weiyao Zhao, Zengji Yue, Zhi Li, Abuduliken Bake, Olexandra Marenych, Zeljko Pastuovic, Mitchell John Bromley Nancarrow, Zhaoming Zhang, Dong-Chen Qi, Peter Evans, D Rg Mitchell, Xiaolin Wang

Australian Institute for Innovative Materials - Papers

The surfaces of Sb2Te3 topological insulator crystals were implanted using a 40 keV chromium ion beam. To facilitate uniform doping, the Sb2Te3 was passivated with a thin TiO2 film before the implantation step. The resulting chemical structure was studied using atomic-resolution transmission electron microscopy. A fluence of 7 × 1015 ions/cm2 at 40 keV lead to amorphization of the Sb2Te3 surface, with chromium predominantly incorporated in the amorphous layer. Heating to 200 °C caused the amorphous region to recrystallize and led to the formation of a thin chromium-rich ...


Local Electronic And Magnetic Properties Of The Doped Topological Insulators Bi2se3:Ca And Bi2te3:Mn Investigated Using Ion-Implanted 8li Β−Nmr, Ryan M. L. Mcfadden, Aris Chatzichristos, David L. Cortie, Derek Fujimoto, Yew San Hor, Huiwen Ji, Victoria L. Karner, Robert F. Kiefl, C. D. Philip Levy, Ruohong Li, Iain Mckenzie, Gerald D. Morris, Matthew R. Pearson, Monika Stachura, Robert J. Cava, W Andrew Macfarlane Jan 2020

Local Electronic And Magnetic Properties Of The Doped Topological Insulators Bi2se3:Ca And Bi2te3:Mn Investigated Using Ion-Implanted 8li Β−Nmr, Ryan M. L. Mcfadden, Aris Chatzichristos, David L. Cortie, Derek Fujimoto, Yew San Hor, Huiwen Ji, Victoria L. Karner, Robert F. Kiefl, C. D. Philip Levy, Ruohong Li, Iain Mckenzie, Gerald D. Morris, Matthew R. Pearson, Monika Stachura, Robert J. Cava, W Andrew Macfarlane

Australian Institute for Innovative Materials - Papers

We report β−NMR measurements in Bi2Se3:Ca and Bi2Te3:Mn single crystals using 8Li+ implanted to depths on the order of 100 nm. Above ∼200K, spin-lattice relaxation reveals diffusion of 8Li+, with activation energies of ∼0.4eV (∼0.2eV) in Bi2Se3:Ca (Bi2Te3:Mn). At lower temperatures, the NMR properties are those of a heavily doped semiconductor in the metallic limit, with Korringa relaxation and a small, negative, temperature-dependent Knight shift in Bi2Se3:Ca. From this, we make a detailed comparison with the isostructural tetradymite Bi2Te2Se [McFadden et al., Phys. Rev. B 99, 125201 (2019)]. In the magnetic Bi2Te3 ...


Controlled Hydrogenation Into Defective Interlayer Bismuth Oxychloride Via Vacancy Engineering, Dandan Cui, Kang Xu, Xingan Dong, Dongdong Lv, Fan Dong, Weichang Hao, Yi Du, Jun Chen Jan 2020

Controlled Hydrogenation Into Defective Interlayer Bismuth Oxychloride Via Vacancy Engineering, Dandan Cui, Kang Xu, Xingan Dong, Dongdong Lv, Fan Dong, Weichang Hao, Yi Du, Jun Chen

Australian Institute for Innovative Materials - Papers

Hydrogenation is an effective approach to improve the performance of photocatalysts within defect engineering methods. The mechanism of hydrogenation and synergetic effects between hydrogen atoms and local electronic structures, however, remain unclear due to the limits of available photocatalytic systems and technical barriers to observation and measurement. Here, we utilize oxygen vacancies as residential sites to host hydrogen atoms in a layered bismuth oxychloride material containing defects. It is confirmed theoretically and experimentally that the hydrogen atoms interact with the vacancies and surrounding atoms, which promotes the separati30on and transfer processes of photo-generated carriers via the resulting band structure. The ...


A Wearable Sensor For The Detection Of Sodium And Potassium In Human Sweat During Exercise, Paolo Pirovano, Matthew Dorrian, Akshay Shinde, Andrew Donohoe, Aidan Brady, Niall Moyna, Gordon G. Wallace, Dermot Diamond, Margaret Mccaul Jan 2020

A Wearable Sensor For The Detection Of Sodium And Potassium In Human Sweat During Exercise, Paolo Pirovano, Matthew Dorrian, Akshay Shinde, Andrew Donohoe, Aidan Brady, Niall Moyna, Gordon G. Wallace, Dermot Diamond, Margaret Mccaul

Australian Institute for Innovative Materials - Papers

© 2020 The Author(s) The SwEatch platform, a wearable sensor for sampling and measuring the concentration of electrolytes in human sweat in real time, has been improved in order to allow the sensing of two analytes. The solid contact ion-sensitive electrodes (ISEs) for the detection of Na+ and K+ have been developed in two alternative formulations, containing either poly(3,4-ethylenedioxythiophene) (PEDOT) or poly(3-octylthiophene-2,5-diyl) (POT) as a conductive polymer transducing component. The solution-processable POT formulation simplifies the fabrication process, and sensor to sensor reproducibility has been improved via partial automation using an Opentron® automated pipetting robot. The resulting ...


Ultrahigh Electromechanical Coupling And Its Thermal Stability In (Na1/2bi1/2)Tio3-Based Lead-Free Single Crystals, Chao Chen, Li Yang, Xingan Jiang, Xiaokun Huang, Xiaoyi Gao, Na Tu, Kaizheng Shu, Xiangping Jiang, Shujun Zhang, Haosu Luo Jan 2020

Ultrahigh Electromechanical Coupling And Its Thermal Stability In (Na1/2bi1/2)Tio3-Based Lead-Free Single Crystals, Chao Chen, Li Yang, Xingan Jiang, Xiaokun Huang, Xiaoyi Gao, Na Tu, Kaizheng Shu, Xiangping Jiang, Shujun Zhang, Haosu Luo

Australian Institute for Innovative Materials - Papers

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. In this work, we report the ultrahigh electromechanical coupling performance of NBT-6BT-KNN lead-free single crystal at room temperature. The thickness mode electromechanical coupling coefficient (kt) and the 31 mode electromechanical coupling coefficient (k31) reach 69.0% and 45.7%, respectively, which are superior to the PZT-5H lead-based ceramics of kt ~ 60% and k31~39%. In addition, the evolution of the crystal structure and domain morphology is revealed by Raman scattering spectra, a polarizing microscope and piezoelectric force microscopy characterization.


Experimental Evaluation And Analytical Model Of The Pressure Generated By Elastic Compression Garments On A Deformable Human Limb Analogue, Christopher J. Richards, Julie R. Steele, Geoffrey M. Spinks Jan 2020

Experimental Evaluation And Analytical Model Of The Pressure Generated By Elastic Compression Garments On A Deformable Human Limb Analogue, Christopher J. Richards, Julie R. Steele, Geoffrey M. Spinks

Australian Institute for Innovative Materials - Papers

© 2020 Compression garments are extensively used for various therapeutic treatments and are expected to deliver accurate and reproducible compression pressures. This study focuses on developing an analytical model to predict the pressure generation by compression garments on human limb analogues. The analogues consisted of non-compressible and compressible cylinders that were chosen as the first step towards evaluating pressure generation on real human limbs. An experimental platform was developed to quantify the relationship between material properties, initial garment extension and pressure. A mathematical model was presented that provided greater accuracy in predicting the pressure generated by compression garments than the existing ...


Confning Tio2 Nanotubes In Pecvd‑Enabled Graphene Capsules Toward Ultrafast K‑Ion Storage: In Situ Tem/Xrd Study And Dft Analysis, Jingsheng Cai, Ran Cai, Zhongti Sun, Xiangguo Wang, Nan Wei, Feng Xu, Yuanlong Shao, Peng Gao, Shi Xue Dou, Jingyu Sun Jan 2020

Confning Tio2 Nanotubes In Pecvd‑Enabled Graphene Capsules Toward Ultrafast K‑Ion Storage: In Situ Tem/Xrd Study And Dft Analysis, Jingsheng Cai, Ran Cai, Zhongti Sun, Xiangguo Wang, Nan Wei, Feng Xu, Yuanlong Shao, Peng Gao, Shi Xue Dou, Jingyu Sun

Australian Institute for Innovative Materials - Papers

© 2020, © 2020, The Author(s). Titanium dioxide (TiO2) has gained burgeoning attention for potassium-ion storage because of its large theoretical capacity, wide availability, and environmental benignity. Nevertheless, the inherently poor conductivity gives rise to its sluggish reaction kinetics and inferior rate capability. Here, we report the direct graphene growth over TiO2 nanotubes by virtue of chemical vapor deposition. Such conformal graphene coatings effectively enhance the conductive environment and well accommodate the volume change of TiO2 upon potassiation/depotassiation. When paired with an activated carbon cathode, the graphene-armored TiO2 nanotubes allow the potassium-ion hybrid capacitor full cells to harvest an energy ...


Nodal Ring Spin Gapless Semiconductor: New Member Of Spintronic Materials, Tie Yang, Zhenxiang Cheng, Xiaotian Wang, Xiaolin Wang Jan 2020

Nodal Ring Spin Gapless Semiconductor: New Member Of Spintronic Materials, Tie Yang, Zhenxiang Cheng, Xiaotian Wang, Xiaolin Wang

Australian Institute for Innovative Materials - Papers

Both spin gapless semiconductors (SGSs) and nodal ring states (NRSs) have aroused great scientific interest in recent years due to their unique electronic properties and high application potential. However, since their advent, all SGSs and NRSs have been predicted in independent materials. In this work, we proposed a novel type of material, nodal ring spin gapless semiconductor (NRSGS), which combines both states of the SGSs and NRSs. The synthesized material Mg2VO4 is selected as a potential candidate. Detailed band structure analysis reveals that there are gapless crossings in the spin-up direction, which are from multiple topological nodal rings located exactly ...


Synthesis And 3d Printing Of Conducting Alginate–Polypyrrole Ionomers, Cassandra Wright, Binbin Zhang, Johnson Chung, Jonathan Pannell, Melissa Kuester, Paul J. Molino, Timothy Hanks Jan 2020

Synthesis And 3d Printing Of Conducting Alginate–Polypyrrole Ionomers, Cassandra Wright, Binbin Zhang, Johnson Chung, Jonathan Pannell, Melissa Kuester, Paul J. Molino, Timothy Hanks

Australian Institute for Innovative Materials - Papers

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Hydrogels composed of calcium cross-linked alginate are under investigation as bioinks for tissue engineering scaffolds due to their variable viscoelasticity, biocompatibility, and erodibility. Here, pyrrole was oxidatively polymerized in the presence of sodium alginate solutions to form ionomeric composites of various compositions. The IR spectroscopy shows that mild base is required to prevent the oxidant from attacking the alginate during the polymerization reaction. The resulting composites were isolated as dried thin films or cross-linked hydrogels and aerogels. The products were characterized by elemental analysis to determine polypyrrole incorporation, electrical conductivity measurements, and ...


An In-Depth Study Of Zn Metal Surface Chemistry For Advanced Aqueous Zn-Ion Batteries, Junnan Hao, Bo Li, Xiaolong Li, Xiaohui Zeng, Shilin Zhang, Fuhua Yang, Sailin Liu, Dan Li, Chao Wu, Zaiping Guo Jan 2020

An In-Depth Study Of Zn Metal Surface Chemistry For Advanced Aqueous Zn-Ion Batteries, Junnan Hao, Bo Li, Xiaolong Li, Xiaohui Zeng, Shilin Zhang, Fuhua Yang, Sailin Liu, Dan Li, Chao Wu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Although Zn metal has been regarded as the most promising anode for aqueous batteries, it persistently suffers from serious side reactions and dendrite growth in mild electrolyte. Spontaneous Zn corrosion and hydrogen evolution damage the shelf life and calendar life of Zn-based batteries, severely affecting their industrial applications. Herein, a robust and homogeneous ZnS interphase is built in situ on the Zn surface by a vapor–solid strategy to enhance Zn reversibility. The thickness of the ZnS film is controlled via the treatment temperature, and the performance of the protected Zn electrode is ...


Correlations Between The Structure And Superconducting Properties Of Mt-Ybacuo, Tetiana Prikhna, V Moshchill, J Rabier, X Chaud, A Joulain, Alexey Pan, D Litskendorf, T Habisreuther Jan 2020

Correlations Between The Structure And Superconducting Properties Of Mt-Ybacuo, Tetiana Prikhna, V Moshchill, J Rabier, X Chaud, A Joulain, Alexey Pan, D Litskendorf, T Habisreuther

Australian Institute for Innovative Materials - Papers

© Published under licence by IOP Publishing Ltd. Comprehensive experimental results of fully oxidized (up to YBa2Cu3O6,9-7) melt-Textured YBaCuO materials with different microstructures are presented. These microstructures are built respectively: (1) with a high dislocations density but almost without twins (after high temperature treatment at 2 GPa) and (2) with a high twin density, but practically free from dislocations and stacking faults (after high temperature oxygenation at 10-16 MPa). It is shown that for attaining high critical current densities and fields of irreversibility (jc(H-c, 0 T)=9•104 A/cm2, H irr=9.7 T at 77 K), a ...


Diffused Morphotropic Phase Boundary In Relaxor-Pbtio3crystals: High Piezoelectricity With Improved Thermal Stability, Gang Liu, Lingping Kong, Qingyang Hu, Shujun Zhang Jan 2020

Diffused Morphotropic Phase Boundary In Relaxor-Pbtio3crystals: High Piezoelectricity With Improved Thermal Stability, Gang Liu, Lingping Kong, Qingyang Hu, Shujun Zhang

Australian Institute for Innovative Materials - Papers

© 2020 Author(s). Solid solution ferroelectrics are the most widely used piezoelectric material for numerous electromechanical applications, including sensors, actuators, and transducers. A milestone in ferroelectric research is the discovery of the morphotropic phase boundary that was first reported in Pb(ZrxTi1-x)O3, which has been extensively solicited to improve the performance of various solid solution ferroelectrics, including those having the highest piezoelectricity known today. However, due to the inherent correlation between phase transition and thermodynamic imbalance, the efforts of building the phase boundary encounter the challenge that high performance materials are generally accompanied by property instability. Here, we report ...