Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 42

Full-Text Articles in Physical Sciences and Mathematics

Optimal Stopping Problems For A Family Of Continuous-Time Markov Processes, Héctor Jasso-Fuentes, Jose-Luis Menaldi, Fidel Vásquez-Rojas Jun 2021

Optimal Stopping Problems For A Family Of Continuous-Time Markov Processes, Héctor Jasso-Fuentes, Jose-Luis Menaldi, Fidel Vásquez-Rojas

Mathematics Faculty Research Publications

In this paper we study the well-know optimal stopping problem applied to a general family of continuous-time Markov process. The approach to follow is merely analytic and it is based on the characterization of stopping problems through the study of a certain variational inequality; namely one solution of this inequality will coincide with the optimal value of the stopping problem. In addition, by means of this characterization, it is possible to find the so-named continuation region, and as a byproduct obtaining the optimal stopping time. The most of the material is based on the semigroup theory, infinitesimal generators and resolvents. …


On Some Optimal Stopping Problems With Constraint, J. L. Menaldi, M. Robin Oct 2016

On Some Optimal Stopping Problems With Constraint, J. L. Menaldi, M. Robin

Mathematics Faculty Research Publications

We consider the optimal stopping problem of a Markov process {xt : t ≤ 0} when the controller is allowed to stop only at the arrival times of a signal, that is, at a sequence of instants {τn : n ≤ 1} independent of {xt : t ≤ 0}. We solve in detail this problem for general Markov–Feller processes with compact state space when the interarrival times of the signal are independent identically distributed random variables. In addition, we discuss several extensions to other signals and to other cases of state spaces. These results …


Almost Sure Asymptotic Stabilization Of Differential Equations With Time-Varying Delay By Lévy Noise, Dezhi Liu, Weiqun Wang, Jose Luis Menaldi Jan 2015

Almost Sure Asymptotic Stabilization Of Differential Equations With Time-Varying Delay By Lévy Noise, Dezhi Liu, Weiqun Wang, Jose Luis Menaldi

Mathematics Faculty Research Publications

This paper aims to determine that the Lévy noise can stabilize the given differential equations with time-varying delay, which has generalized the Brownian motion case. An analysis is developed and sufficient conditions on the stabilization for stochastic differential equations with time-varying delay are presented. Our stabilization criteria is in terms of linear matrix inequalities (LMIs), whence the feedback controls can be designed more easily in practice.


On The Impulse Control Of Jump Diffusions, Erhan Bayraktar, Thomas Emmerling, José-Luis Menaldi Jun 2013

On The Impulse Control Of Jump Diffusions, Erhan Bayraktar, Thomas Emmerling, José-Luis Menaldi

Mathematics Faculty Research Publications

Regularity of the impulse control problem for a nondegenerate n-dimensional jump diffusion with infinite activity and finite variation jumps was recently examined in [M. H. A. Davis, X. Guo, and G. Wu, SIAM J. Control Optim., 48 (2010), pp. 5276–5293]. Here we extend the analysis to include infinite activity and infinite variation jumps. More specifically, we show that the value function u of the impulse control problem satisfies uWloc2,p(Rn).


Singular Ergodic Control For Multidimensional Gaussian-Poisson Processes, J. L. Menaldi, M. Robin May 2013

Singular Ergodic Control For Multidimensional Gaussian-Poisson Processes, J. L. Menaldi, M. Robin

Mathematics Faculty Research Publications

Singular control for multidimensional Gaussian-Poisson processes with a long-run (or ergodic) and a discounted criteria are discussed. The dynamic programming yields the corresponding Hamilton-Jacobi-Bellman equations, which are discussed. Full details on the proofs and further extensions are left for coming works.


Quantitative Stability Of Linear Infinite Inequality Systems Under Block Perturbations With Applications To Convex Systems, M J. Cánovas, M A. Lopez, Boris S. Mordukhovich, J Parra Apr 2011

Quantitative Stability Of Linear Infinite Inequality Systems Under Block Perturbations With Applications To Convex Systems, M J. Cánovas, M A. Lopez, Boris S. Mordukhovich, J Parra

Mathematics Research Reports

The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set J. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is loo(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel-Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn …


Complete Characterizations Of Local Weak Sharp Minima With Applications To Semi-Infinite Optimization And Complementarity, Boris S. Mordukhovich, Naihua Xiu, Jinchuan Zhou Mar 2011

Complete Characterizations Of Local Weak Sharp Minima With Applications To Semi-Infinite Optimization And Complementarity, Boris S. Mordukhovich, Naihua Xiu, Jinchuan Zhou

Mathematics Research Reports

In this paper we identify a favorable class of nonsmooth functions for which local weak sharp minima can be completely characterized in terms of normal cones and subdifferentials, or tangent cones and subderivatives, or their mixture in finite-dimensional spaces. The results obtained not only significantly extend previous ones in the literature, but also allow us to provide new types of criteria for local weak sharpness. Applications of the developed theory are given to semi-infinite programming and to semi-infinite complementarity problems.


On The Lqg Theory With Bounded Control, D. V. Iourtchenko, J. L. Menaldi, A. S. Bratus Oct 2010

On The Lqg Theory With Bounded Control, D. V. Iourtchenko, J. L. Menaldi, A. S. Bratus

Mathematics Faculty Research Publications

We consider a stochastic optimal control problem in the whole space, where the corresponding HJB equation is degenerate, with a quadratic running cost and coeffcients with linear growth. In this paper we provide a full mathematical details on the key estimate relating the asymptotic behavior of the solution as the space variable goes to infinite.


Generalized Newton's Method Based On Graphical Derivatives, T Hoheisel, C Kanzow, Boris S. Mordukhovich, Hung M. Phan Oct 2010

Generalized Newton's Method Based On Graphical Derivatives, T Hoheisel, C Kanzow, Boris S. Mordukhovich, Hung M. Phan

Mathematics Research Reports

This paper concerns developing a numerical method of the Newton type to solve systems of nonlinear equations described by nonsmooth continuous functions. We propose and justify a new generalized Newton algorithm based on graphical derivatives, which have never been used to derive a Newton-type method for solving nonsmooth equations. Based on advanced techniques of variational analysis and generalized differentiation, we establish the well-posedness of the algorithm, its local superlinear convergence, and its global convergence of the Kantorovich type. Our convergence results hold with no semismoothness assumption, which is illustrated by examples. The algorithm and main results obtained in the paper …


Variational Analysis In Semi-Infinite And Infinite Programming, Ii: Necessary Optimality Conditions, M J. Cánovas, M A. Lopez, Boris S. Mordukhovich, J Parra Jul 2009

Variational Analysis In Semi-Infinite And Infinite Programming, Ii: Necessary Optimality Conditions, M J. Cánovas, M A. Lopez, Boris S. Mordukhovich, J Parra

Mathematics Research Reports

This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to problems of semi-infinite and infinite programming with feasible solution sets defined by parameterized systems of infinitely many linear inequalities of the type intensively studied in the preceding development [5] from our viewpoint of robust Lipschitzian stability. We present meaningful interpretations and practical examples of such models. The main results establish necessary optimality conditions for a broad class of semi-infinite and infinite programs, where objectives are generally described by nonsmooth and nonconvex functions on Banach spaces and where infinite constraint inequality systems are indexed by arbitrary sets. …


Variational Analysis In Semi-Infinite And Infinite Programming, I: Stability Of Linear Inequality Systems Of Feasible Solutions, M J. Cánovas, M A. Lopez, Boris S. Mordukhovich, J Parra Jun 2009

Variational Analysis In Semi-Infinite And Infinite Programming, I: Stability Of Linear Inequality Systems Of Feasible Solutions, M J. Cánovas, M A. Lopez, Boris S. Mordukhovich, J Parra

Mathematics Research Reports

This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to parametric problems of semi-infinite and infinite programming, where decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Part I is primarily devoted to the study of robust Lipschitzian stability of feasible solutions maps for such problems described by parameterized systems of infinitely many linear inequalities in Banach spaces of decision variables indexed by an arbitrary set T. The parameter space of admissible perturbations under consideration is formed by all bounded functions on T equipped with the standard supremum norm. Unless the index set is finite, this …


Some Results Of Backward Itô Formula, Guiseppe Da Prato, Jose-Luis Menaldi, Luciano Tubaro May 2007

Some Results Of Backward Itô Formula, Guiseppe Da Prato, Jose-Luis Menaldi, Luciano Tubaro

Mathematics Faculty Research Publications

We use the notion of backward integration, with respect to a general Lévy process, to treat, in a simpler and unifying way, various classical topics as: Girsanov theorem, rst order partial differential equations, the Liouville (or Lyapunov) equations and the stochastic characteristic method.


A Distributed Parabolic Control With Mixed Boundary Conditions, Jose-Luis Menaldi, Domingo Alberto Tarzia Jan 2007

A Distributed Parabolic Control With Mixed Boundary Conditions, Jose-Luis Menaldi, Domingo Alberto Tarzia

Mathematics Faculty Research Publications

We study the asymptotic behavior of an optimal distributed control problem where the state is given by the heat equation with mixed boundary conditions. The parameter α intervenes in the Robin boundary condition and it represents the heat transfer coefficient on a portion Γ1 of the boundary of a given regular n-dimensional domain. For each α, the distributed parabolic control problem optimizes the internal energy g. It is proven that the optimal control ĝα with optimal state uĝαα and optimal adjoint state pĝαα are convergent as α → 1 …


Epi-Convergent Discretization Of The Generalizaed Bolza Problem In Dynamic Optimization, Boris S. Mordukhovich, Teemu Pennanen Dec 2006

Epi-Convergent Discretization Of The Generalizaed Bolza Problem In Dynamic Optimization, Boris S. Mordukhovich, Teemu Pennanen

Mathematics Research Reports

The paper is devoted to well-posed discrete approximations of the so-called generalized Bolza problem of minimizing variational functionals defined via extended-real-valued functions. This problem covers more conventional Bolza-type problems in the calculus of variations and optimal control of differential inclusions as well of parameterized differential equations. Our main goal is find efficient conditions ensuring an appropriate epi-convergence of discrete approximations, which plays a significant role in both the qualitative theory and numerical algorithms of optimization and optimal control. The paper seems to be the first attempt to study epi-convergent discretizations of the generalized Bolza problem; it establishes several rather general …


Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes?, Haijun Wu, Zhimin Zhang Aug 2006

Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes?, Haijun Wu, Zhimin Zhang

Mathematics Research Reports

We study adaptive finite element methods for elliptic problems with domain corner singularities. Our model problem is the two dimensional Poisson equation. Results of this paper are two folds. First, we prove that there exists an adaptive mesh (gauged by a discrete mesh density function) under which the recovered.gradient by the Polynomial Preserving Recovery (PPR) is superconvergent. Secondly, we demonstrate by numerical examples that an adaptive procedure with a posteriori error estimator based on PPR does produce adaptive meshes satisfy our mesh density assumption, and the recovered gradient by PPR is indeed supercoveregent in the adaptive process.


Remarks On Risk-Sensitive Control Problems, José Luis Menaldi, Maurice Robin Oct 2005

Remarks On Risk-Sensitive Control Problems, José Luis Menaldi, Maurice Robin

Mathematics Faculty Research Publications

The main purpose of this paper is to investigate the asymptotic behavior of the discounted risk-sensitive control problem for periodic diffusion processes when the discount factor α goes to zero. If uα(θ, x) denotes the optimal cost function, being the risk factor, then it is shown that limα→0αuα(θ, x) = ξ(θ) where ξ(θ) is the average on ]0, θ[ of the optimal cost of the (usual) in nite horizon risk-sensitive control problem.


Penalty Approximation And Analytical Characterization Of The Problem Of Super-Replication Under Portfolio Constraints, Alain Bensoussan, Nizar Touzi, José Luis Menaldi Jan 2005

Penalty Approximation And Analytical Characterization Of The Problem Of Super-Replication Under Portfolio Constraints, Alain Bensoussan, Nizar Touzi, José Luis Menaldi

Mathematics Faculty Research Publications

In this paper, we consider the problem of super-replication under portfolio constraints in a Markov framework. More specifically, we assume that the portfolio is restricted to lie in a convex subset, and we show that the super-replication value is the smallest function which lies above the Black-Scholes price function and which is stable for the so-called face lifting operator. A natural approach to this problem is the penalty approximation, which not only provides a constructive smooth approximation, but also a way to proceed analytically.


Natural Superconvergent Points Of Triangular Finite Elements, Zhimin Zhang, Runchang Lin Jul 2003

Natural Superconvergent Points Of Triangular Finite Elements, Zhimin Zhang, Runchang Lin

Mathematics Research Reports

In this work, we analytically identify natural superconvergent points of function values and gradients for triangular elements. Both the Poisson equation and the Laplace equation are discussed for polynomial finite element spaces (with degrees up to 8) under four different mesh patterns. Our results verify computer findings of [2], especially, we confirm that the computed data have 9 digits of accuracy with an exception of one pair (which has 8-7 digits of accuracy). In addition, we demonstrate that the function value superconvergent points predicted by the symmetry theory [14] are the only superconvergent points for the Poisson equation. Finally, we …


Impulse Control Of Stochastic Navier-Stokes Equations, J. L. Menaldi, S. S. Sritharan Jan 2003

Impulse Control Of Stochastic Navier-Stokes Equations, J. L. Menaldi, S. S. Sritharan

Mathematics Faculty Research Publications

In this paper we study stopping time and impulse control problems for stochastic Navier-Stokes equation. Exploiting a local monotonicity property of the nonlinearity, we establish existence and uniqueness of strong solutions in two dimensions which gives a Markov-Feller process. The variational inequality associated with the stopping time problem and the quasi-variational inequality associated with the impulse control problem are resolved in a weak sense, using semigroup approach with a convergence uniform over path.


A Posteriori Error Estimates Based On Polynomial Preserving Recovery, Zhimin Zhang, Ahmed Naga Sep 2002

A Posteriori Error Estimates Based On Polynomial Preserving Recovery, Zhimin Zhang, Ahmed Naga

Mathematics Research Reports

Superconvergence of order O(h1+rho), for some rho is greater than 0, is established for gradients recovered using Polynomial Preserving Recovery technique when the mesh is mildly structured. Consequently this technique can be used in building a posteriori error estimator that is asymptotically exact.


Gradient Recovery And A Posteriori Estimate For Bilinear Element On Irregular Quadrilateral Meshes, Zhimin Zhang Aug 2002

Gradient Recovery And A Posteriori Estimate For Bilinear Element On Irregular Quadrilateral Meshes, Zhimin Zhang

Mathematics Research Reports

A polynomial preserving gradient recovery method is proposed and analyzed for bilinear element under general quadrilateral meshes. It has been proven that the recovered gradient converges at a rate O(h1+rho) for rho = min(alpha, 1) when the mesh is distorted O(h1+alpha) (alpha > 0) from a regular one. Consequently, the a posteriori error estimator based on the recovered gradient is asymptotically exact.


Analysis Of Recovery Type A Posteriori Error Estimators For Mildly Structured Grids, Jinchao Xu, Zhimin Zhang Jul 2002

Analysis Of Recovery Type A Posteriori Error Estimators For Mildly Structured Grids, Jinchao Xu, Zhimin Zhang

Mathematics Research Reports

Some recovery type error estimators for linear finite element method are analyzed under O(h1+alpha) (alpha greater than 0) regular grids. Superconvergence is established for recovered gradients by three different methods when solving general non-self-adjoint second-order elliptic equations. As a consequence, a posteriori error estimators based on those recovery methods are asymptotically exact.


A Meshless Gradient Recovery Method Part I: Superconvergence Property, Zhiming Zhang, Ahmed Naga Feb 2002

A Meshless Gradient Recovery Method Part I: Superconvergence Property, Zhiming Zhang, Ahmed Naga

Mathematics Research Reports

A new gradient recovery method is introduced and analyzed. It is proved that the method is superconvergent for translation invariant finite element spaces of any order. The method maintains the simplicity, efficiency, and superconvergence properties of the Zienkiewicz-Zhu patch recovery method. In addition, under uniform triangular meshes, the method is superconvergent for the Chevron pattern, and ultraconvergence at element edge centers for the regular pattern.


Discrete Maximum Principle For Nonsmooth Optimal Control Problems With Delays, Boris S. Mordukhovich, Ilya Shvartsman Dec 2001

Discrete Maximum Principle For Nonsmooth Optimal Control Problems With Delays, Boris S. Mordukhovich, Ilya Shvartsman

Mathematics Research Reports

We consider optimal control problems for discrete-time systems with delays. The main goal is to derive necessary optimality conditions of the discrete maximum principle type in the case of nonsmooth minimizing functions. We obtain two independent forms of the discrete maximum principle with transversality conditions described in terms of subdifferentials and superdifferentials, respectively. The superdifferential form is new even for non-delayed systems and may be essentially stronger than a more conventional subdifferential form in some situations.


Ultraconvergence Of Zz Patch Recovery At Mesh Symmetry Points, Zhimin Zhang, Runchang Lin Sep 2001

Ultraconvergence Of Zz Patch Recovery At Mesh Symmetry Points, Zhimin Zhang, Runchang Lin

Mathematics Research Reports

Ultraconvergence property of the Zienkiewicz-Zhu gradient patch recovery technique based on local discrete least squares fitting is established for a large class of even-order finite elements. The result is valid at all rectangular mesh symmetry points. Different smoothing strategies are discussed. Superconvergence recovery for the Q8 element is proved and ultraconvergence numerical examples are demonstrated.


Stochastic Hybrid Control, A. Bensoussan, J. L. Menaldi Sep 2000

Stochastic Hybrid Control, A. Bensoussan, J. L. Menaldi

Mathematics Faculty Research Publications

The objective of this paper is to study the stochastic version of a previous paper of the authors, in which hybrid control for deterministic systems was considered. The modelling is quite similar to the deterministic case. We have a system whose state is composed of a continuous part and a discrete part. They are affected by a continuous type control and an impulse control. The dynamics is moreover perturbed by noise, also a continuous and a discrete noise process. The Markovian character of the state process is preserved. We develop the model and show how the dynamic programming approach leads …


Invariant Measure For Diffusions With Jumps, Jose-Luis Menaldi, Maurice Robin Feb 1999

Invariant Measure For Diffusions With Jumps, Jose-Luis Menaldi, Maurice Robin

Mathematics Faculty Research Publications

Our purpose is to study an ergodic linear equation associated to diffusion processes with jumps in the whole space. This integro-differential equation plays a fundamental role in ergodic control problems of second order Markov processes. The key result is to prove the existence and uniqueness of an invariant density function for a jump diffusion, whose lower order coefficients are only Borel measurable. Based on this invariant probability, existence and uniqueness (up to an additive constant) of solutions to the ergodic linear equation are established.


Ergodic Control Of Reflected Diffusions With Jumps, Jose-Luis Menaldi, Maurice Robin Mar 1997

Ergodic Control Of Reflected Diffusions With Jumps, Jose-Luis Menaldi, Maurice Robin

Mathematics Faculty Research Publications

No abstract provided.


On An Investment-Consumption Model With Transaction Costs, Marianne Akian, José Luis Menaldi, Agnès Sulem Jan 1996

On An Investment-Consumption Model With Transaction Costs, Marianne Akian, José Luis Menaldi, Agnès Sulem

Mathematics Faculty Research Publications

This paper considers the optimal consumption and investment policy for an investor who has available one bank account paying a fixed interest rate and n risky assets whose prices are log-normal diffusions. We suppose that transactions between the assets incur a cost proportional to the size of the transaction. The problem is to maximize the total utility of consumption. Dynamic programming leads to a variational inequality for the value function. Existence and uniqueness of a viscosity solution are proved. The variational inequality is solved by using a numerical algorithm based on policies, iterations, and multigrid methods. Numerical results are displayed …


Optimal Starting-Stopping Problems For Markov-Feller Processes, Jose-Luis Menaldi, Maurice Robin, Min Sun Jan 1996

Optimal Starting-Stopping Problems For Markov-Feller Processes, Jose-Luis Menaldi, Maurice Robin, Min Sun

Mathematics Faculty Research Publications

By means of nested inequalities in semigroup form we give a characterization of the value functions of the starting-stopping problem for general Markov-Feller processes. Next, we consider two versions of constrained problems on the nal state or on the final time. The plan is as follows:

  1. Introduction
  2. Nested variational inequalities
  3. Solution of optimal starting-stopping problem
  4. Problems with constraints

References.