Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

12 C(E,E'Pn) Measurements Of Short Range Correlations In The Tensor-To-Scalar Interaction Transition Region, I. Korover, J. R. Pybus, A. Schmidt, F. Hauenstein, M. Duer, O. Hen, E. Piasetzky, L. B. Weinstein, D. W. Higinbotham, S. Adhikari, K. Adhikari, M. J. Amaryan, Giovanni Angelini, H. Atac, L. Barion, M. Battaglieri, A. Beck, I. Bedlinkskiy, Fatiha Benmokhtar, Steffen Strauch, Ralf W. Gothe, Krishna Chandra Neupane, Et. Al. Aug 2021

12 C(E,E'Pn) Measurements Of Short Range Correlations In The Tensor-To-Scalar Interaction Transition Region, I. Korover, J. R. Pybus, A. Schmidt, F. Hauenstein, M. Duer, O. Hen, E. Piasetzky, L. B. Weinstein, D. W. Higinbotham, S. Adhikari, K. Adhikari, M. J. Amaryan, Giovanni Angelini, H. Atac, L. Barion, M. Battaglieri, A. Beck, I. Bedlinkskiy, Fatiha Benmokhtar, Steffen Strauch, Ralf W. Gothe, Krishna Chandra Neupane, Et. Al.

Faculty Publications

High-momentum configurations of nucleon pairs at short-distance are probed using measurements of the C-12(e, e' p) and C-12(e, e' pN) reactions (where N is either n or p), at high-Q(2) and x(B) > 1.1. The data span a missing-momentum range of 300-1000 MeV/c and are predominantly sensitive to the transition region of the strong nuclear interaction from a Tensor to Scalar interaction. The data are well reproduced by theoretical calculations using the Generalized Contact Formalism with both chiral and phenomenological nucleon-nucleon (NN) interaction models. This agreement suggests that the measured high missing-momentum protons up to 1000 MeV/c predominantly belong to short-ranged …


Metal-Organic Frameworks: Photophysics, Energy Transfer, And Electronic Structure, Ekaterina A. Dolgopolova Apr 2019

Metal-Organic Frameworks: Photophysics, Energy Transfer, And Electronic Structure, Ekaterina A. Dolgopolova

Theses and Dissertations

The current landscape of technological and industrial related fields is looking for novel materials with enhanced performances, which will not only improve various fields in science, but also can ensure increased environmental safety. Recently, metal-organic frameworks (MOFs) have been shown as a promising type of material for a wide range of applications including gas storage and separation, sensing, and heterogeneous catalysis. The main advantages of MOFs rely on their modular structures as well as their porosity. For instance, the modular nature of MOFs provides a control over chromophore arrangement, systematic tuning of ligand design and synthetic conditions allowing one to …


Laboratory Bounds On Electron Lorentz Violation, Brett David Altschul May 2010

Laboratory Bounds On Electron Lorentz Violation, Brett David Altschul

Faculty Publications

Violations of Lorentz boost symmetry in the electron and photon sectors can be constrained by studying several different high-energy phenomenon. Although they may not lead to the strongest bounds numerically, measurements made in terrestrial laboratories produce the most reliable results. Laboratory bounds can be based on observations of synchrotron radiation, as well as the observed absences of vacuum Cerenkov radiation. Using measurements of synchrotron energy losses at LEP and the survival of TeV photons, we place new bounds on the three electron Lorentz violation coefficients c(TJ ), at the 3 x 10-13 to 6 x 10-15 levels.


A Precise Measurement Of The Muon Neutrino–Nucleon Inclusive Charged Current Cross Section Off An Isoscalar Target In The Energy Range 2.5 < EV < 40 Gev By Nomad, Nomad Collaboration, Q. Wu, S. R. Mishra, A. Godley, Roberto Petti, S. Alekhin, P. Astier, D. Autiero, A. Baldisseri, M. Baldo-Ceolin, M. Banner, G. Bassompierre, K. Benslama, N. Besson, I. Bird, B. Blumenfeld, F. Bobisut, J. Bouchez, S. Boyd, A. Bueno, Et. Al. Feb 2008

A Precise Measurement Of The Muon Neutrino–Nucleon Inclusive Charged Current Cross Section Off An Isoscalar Target In The Energy Range 2.5 < EV < 40 Gev By Nomad, Nomad Collaboration, Q. Wu, S. R. Mishra, A. Godley, Roberto Petti, S. Alekhin, P. Astier, D. Autiero, A. Baldisseri, M. Baldo-Ceolin, M. Banner, G. Bassompierre, K. Benslama, N. Besson, I. Bird, B. Blumenfeld, F. Bobisut, J. Bouchez, S. Boyd, A. Bueno, Et. Al.

Faculty Publications

We present a measurement of the muon neutrino–nucleon inclusive charged current cross section, off an isoscalar target, in the neutrino energy range 2.5⩽Ev ⩽ 40GeV. The significance of this measurement is its precision, ±4% in 2.5⩽Ev ⩽ 10GeV, and ± 2.6% in 10⩽Ev ⩽ 40GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.