Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Physical Sciences and Mathematics

An Intelligent Attitude Determination And Control System Concept For A Cubesat Class Spacecraft, Jeremy Straub Sep 2015

An Intelligent Attitude Determination And Control System Concept For A Cubesat Class Spacecraft, Jeremy Straub

Jeremy Straub

An attitude determination and control system (ADCS) is used to orient a spacecraft for a wide variety of purposes (e.g., to keep a camera facing Earth or orient the spacecraft for propulsion system use). The proposed intelligent ADCS has several key features: first, it can be used in multiple modes, spanning from passive stabilization of two axes and unconstrained spin on a third to three-axis full active stabilization. It also includes electromagnetic components to ‘dump’ spin from the reaction wheels. Second, the ADCS utilizes an incorporated autonomous control algorithm to characterize the effect of actuation of the system components and, …


Design And Implementation Of Satellite Software To Facilitate Future Cubesat Development, Timothy Whitney, Jeremy Straub, Ronald Marsh Sep 2015

Design And Implementation Of Satellite Software To Facilitate Future Cubesat Development, Timothy Whitney, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter project is a campus-wide effort at the University of North Dakota to design and build a low-cost CubeSat-class satellite. The intent is to create a publically- available framework that allows a spacecraft to be built with a parts cost of less than USD $5,000 (excluding mission payload-specific costs). This paper focuses on OpenOrbiter’s software system methodology and implementation.

Current work seeks to create a generalized framework that other CubeSat developers can use directly or alter to suit their mission needs. It discusses OpenOrbiter’s overall design goals with an emphasis on software design. The software architecture is divided into …


Improving Satellite Security Through Incremental Anomaly Detection On Large, Static Datasets, Connor Hamlet, Matthew Russell, Jeremy Straub, Scott Kerlin Aug 2015

Improving Satellite Security Through Incremental Anomaly Detection On Large, Static Datasets, Connor Hamlet, Matthew Russell, Jeremy Straub, Scott Kerlin

Jeremy Straub

Anomaly detection is a widely used technique to detect system intrusions. Anomaly detection in Intrusion Detection and Prevent Systems (IDPS) works by establishing a baseline of normal behavior and classifying points that are at a farther distance away as outliers. The result is an “anomaly score”, or how much a point is an outlier. Recent work has been performed which has examined use of anomaly detection in data streams [1]. We propose a new incremental anomaly detection algorithm which is up to 57,000x faster than the non-incremental version while slightly sacrificing the accuracy of results. We conclude that our method …


Scheduling Algorithm Development For An Open Source Software And Open Hardware Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh Apr 2015

Scheduling Algorithm Development For An Open Source Software And Open Hardware Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh

Jeremy Straub

The efficacy of each type of scheduler is assessed rela-tive to the goal of having a time and resource efficient scheduling algorithm. The scheduler must ensure suc-cessful spacecraft operations and maximize the perfor-mance of tasks relative to performance constraints and their respective due dates.


An Onboard Distributed Multiprocessing System For A Cubesat Spacecraft Created From Gumstix Computer-On-Module Units, Michael Wegerson, Jeremy Straub, Ronald Marsh Apr 2015

An Onboard Distributed Multiprocessing System For A Cubesat Spacecraft Created From Gumstix Computer-On-Module Units, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative at the University of North Dakota [1] aims to make ac-cess to space for research and educational purposes easier by enabling the creation of low-cost CubeSats. It is creating the Open Prototype for Educational Nanosats (OPEN), a framework for developing a 1-U CubeSat space-craft with a parts cost of less than $5,000 [2]. The designs [3], documentation and computer code from this will be made publically available to enable the development of programs at other institutions.


Work Done On The Operating Software For Openorbiter, Dayln Limesand, Timothy Whitney, Jeremy Straub, Ronald Marsh Apr 2015

Work Done On The Operating Software For Openorbiter, Dayln Limesand, Timothy Whitney, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Program aims to develop a tem-plate for a CubeSat spacecraft that can be used world-wide to reduce spacecraft development costs1. Unlike other approaches, which may require $50,000 in upfront hardware costs2 or $250,000 in design expenses2, an OPEN-class spacecraft can be built with a parts budget of under $5,0003. This aims to enable low-cost educa-tional missions and missions in developing regions4.


The Creation Of A Communication Systems For A Small Satellite At The University Of North Dakota, Michael Hlas, Jeremy Straub, Ronald Marsh Mar 2015

The Creation Of A Communication Systems For A Small Satellite At The University Of North Dakota, Michael Hlas, Jeremy Straub, Ronald Marsh

Jeremy Straub

Software defined radios (SDRs) are poised to significantly enhance the future of small spacecraft communications. They allow signal processing to be performed on a computer by software rather than requiring dedicated hardware. The SDR takes data from the flight computer and converts it into an analog signal that is transmitted via the spacecraft antenna. Because the signal processing is done in software, the radio can be easily reconfigured.

Data is prepared for transmission by TCP stack software onboard the OpenOrbiter Spacecraft and placed in a queue while the spacecraft is listening for a signal from a ground station. When a …


Update On The Development Of A 1-U Cubesat At The University Of North Dakota, Jeremy Straub, Ronald Marsh Mar 2015

Update On The Development Of A 1-U Cubesat At The University Of North Dakota, Jeremy Straub, Ronald Marsh

Jeremy Straub

An overview of the progress on the development of the OpenOrbiter CubeSat is presented. This covers, at a high level, the work that has been performed during the past year and foundational work that occurred prior to this. This poster also discusses future plans for the Open Prototype for Educational NanoSats (OPEN) framework and the OpenOrbiter Small Spacecraft Development Initiative. Particular focus is given to the ongoing work to prepare for an orbital launch, which the program has been down-selected for through the NASA ELaNa CubeSat Launch Initiative program.

In addition to this discussion of the program’s origins, goals and …


Scheduling Algorithm Development For An Open Source Software Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh Mar 2015

Scheduling Algorithm Development For An Open Source Software Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter project at the University of North Dakota is working to develop a set of designs for a CubeSat class spacecraft as well as a working, modular collection of open source code that can be used by other CubeSat projects as a starting point for development. The availability of these designs and this codebase should foster accelerated development for other CubeSat projects, allowing those projects to focus their effort on their own application area, instead of reinventing the proverbial wheel. One aspect of this is to implement a task scheduler which will run on a Raspberry Pi flight computer …


An Overview Of The Openorbiter Autonomous Operating Software, Dayln Limesand, Timothy Whitney, Jeremy Straub, Ronald Marsh Mar 2015

An Overview Of The Openorbiter Autonomous Operating Software, Dayln Limesand, Timothy Whitney, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter spacecraft aims to demonstrate the efficacy of the Open Prototype for Educational Nanosats (OPEN) framework. Software is an important part of this framework. This paper discusses the operating software for the spacecraft (which runs on top of the Linux operating system to command spacecraft operations). It presents an overview of this software and then pays particular attention to the aspects of software design that enable onboard autonomy. It also discusses the messaging scheme that is used onboard and the testing and validation plan. Finally, it discusses system extensibility, before concluding.


Nanosatellite Scheduling Using A Dictionary Module And A ‘Useful Trick’ With Coded Unsigned Integers, Monilito Castro, Jeremy Straub Mar 2015

Nanosatellite Scheduling Using A Dictionary Module And A ‘Useful Trick’ With Coded Unsigned Integers, Monilito Castro, Jeremy Straub

Jeremy Straub

Schedulers for small spacecraft must satisfy the dual requirement of generating very efficient schedules while concurrently minimizing the resources required to create the schedule. This paper proposes a technique for searching for tasks that can be utilized to fill particular schedule locations. This approach is based on a modular system for storing important variables. This modular system has three important variables: t0, x0 and y0. The variable y is latitude and x is longitude. Time variable t is an integer and each unit represents a time quantum. They are related to each other by three functions Ft, Fx, and Fy. …


Small Satellite Communications Security And Student Learning In The Development Of Ground Station Software, Scott Kerlin, Jeremy Straub, Jacob Huhn, Alexander Lewis Mar 2015

Small Satellite Communications Security And Student Learning In The Development Of Ground Station Software, Scott Kerlin, Jeremy Straub, Jacob Huhn, Alexander Lewis

Jeremy Straub

Communications security is gaining importance as small spacecraft include actuator capabilities (i.e., propulsion), payloads which could be misappropriated (i.e., high resolution cameras), and research missions with high value/cost. However, security is limited by capability, interoperability and regulation. Additionally, as the small satellite community becomes more mainstream and diverse, the lack of cheap, limited-to-no configuration, pluggable security modules for small satellites also presents a limit for user adoption of security.

This paper discusses a prospective approach for incorporating robust security into a student-developed ground station created at the University of North Dakota as part of a Computer Science Department senior design …


Using A Constellation Of Cubesats For In-Space Optical 3d Scanning, Jeremy Straub Mar 2015

Using A Constellation Of Cubesats For In-Space Optical 3d Scanning, Jeremy Straub

Jeremy Straub

The assessment of in-space objects is an area of ongoing research. Characterization of resident space objects (RSOs) can be useful for assessing the operating status of operator-affiliated or non-affiliated space assets, identifying unknown objects or gathering additional details for known objects. Under the proposed approach, a ring-like constellation of CubeSats passes around the target (at a distance) collecting imagery. This imagery is then utilized to create a 3D model of the target. This paper considers several key elements of a constellation to perform this type of imaging, including the constellation design and imaging capabilities required and the astrodynamics relevant to …


The Critical Role Of Cubesat Spacecraft In A Multi-Tier Mission For Mars Exploration, Jeremy Straub Nov 2014

The Critical Role Of Cubesat Spacecraft In A Multi-Tier Mission For Mars Exploration, Jeremy Straub

Jeremy Straub

A multi-tier architecture is under development (with similar craft heterogeneity to Fink's work on ‘tier scalable’ missions) which will facilitate autonomous local control of multiple heterogeneous craft. This mission architecture has been developed with a Mars mission in mind and has included CubeSats in a variety of critical mission roles.

Two concepts will be presented: the addition of CubeSats to a larger-scale multi-tier mission, where the CubeSats serve a supporting role and a mission driven by CubeSat orbital capabilities. In the first, CubeSats are utilized to augment the area of spatial coverage that can be obtained and the temporal coverage …


Development Of A Ground Station For The Openorbiter Spacecraft, Jacob Huhn, Alexander Lewis, Christoffer Korvald, Jeremy Straub, Scott Kerlin Apr 2014

Development Of A Ground Station For The Openorbiter Spacecraft, Jacob Huhn, Alexander Lewis, Christoffer Korvald, Jeremy Straub, Scott Kerlin

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative[1] at the University of North Dakota is working to design and build a low cost[2] and open-hardware / opensource software CubeSat[3]. The Ground Station is the user interface for operators of the satellite. The ground station software must manage spacecraft communications, track its orbital location , manage task assignment, provide security and retrieve the data from the spacecraft. This will be presented via a graphical user interface that allows a user to easily perform these tasks.


Update On The Operating Software For Openorbiter, Dayln Limesand, Christoffer Korvald, Jeremy Straub, Ronald Marsh Apr 2014

Update On The Operating Software For Openorbiter, Dayln Limesand, Christoffer Korvald, Jeremy Straub, Ronald Marsh

Jeremy Straub

The operating software team of the OpenOrbiter project has been tasked with developing software for general spacecraft maintenance, performing mission tasks and the monitoring of system critical aspects of the spacecraft. To do so, the team is developing an autonomous system that will be able to continuously check sensors for data, and schedule tasks that pertain to the current mission and general maintenance of the onboard systems. Development in support of these objectives is ongoing with work focusing on the completion of the development of a stable system. This poster presents an overview of current work on the project and …


Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin Mar 2014

Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative[1] at the University of North Dakota is working to design and build a low cost[2] and open-hardware / opensource software CubeSat[3]. The Ground Station is the user interface for operators of the satellite. The ground station software must manage spacecraft communications, track its orbital location , manage task assignment, provide security and retrieve the data from the spacecraft. This will be presented via a graphical user interface that allows a user to easily perform these tasks.


The Use Of The Roofsat For Computer Science And Engineering Education, Jeremy Straub, Ronald Marsh Mar 2014

The Use Of The Roofsat For Computer Science And Engineering Education, Jeremy Straub, Ronald Marsh

Jeremy Straub

This poster presents an overview of a tool that has been created to provide students with real-world experience in the design, development and operation of control and scientific mission software for a cyber-physical system. The ROOFSAT, developed at UND, is a low-cost analog for a small spacecraft (though in many ways these capabilities also enable similar UAV work). The ROOFSAT was constructed with approximately $1,500 generously provided by the John D. Odegard School of Aerospace Sciences out of commercially-available parts. It includes multiple cameras, a pan-tilt mount and the same space-qualified computer hardware which has been used on both spacecraft …


Software Group Of The Openorbiter Project, Christoffer Korvald, Jeremy Straub Mar 2014

Software Group Of The Openorbiter Project, Christoffer Korvald, Jeremy Straub

Jeremy Straub

This poster provides an update regarding software development work for the OpenOrbiter project. The software development effort for the OpenOrbiter project currently consists of four teams: payload software development, operating software development, ground station software development and testing. The teams are designing and developing the software needed to create and operate a small spacecraft which can be produced for under USD $5,000 by students, faculty and others around the world. Participating students are gaining valuable real-world experience through the process of designing and developing the spacecraft. Each team is headed by a team lead that is responsible for conducting weekly …


Scheduling For A Small Satellite For Remote Sensed Data Collection, Donovan Torgerson, Christoffer Korvalnd, Jeremy Straub, Ronald Marsh Dec 2013

Scheduling For A Small Satellite For Remote Sensed Data Collection, Donovan Torgerson, Christoffer Korvalnd, Jeremy Straub, Ronald Marsh

Jeremy Straub

Small satellites, such as CubeSats, serve as excellent platforms for the collection of data that can be supplied to a geographic information system. To serve this need, they require a robust and lightweight task scheduler due to their limited onboard power production capabilities as well as internal space restrictions. Because of these constraints, schedules must be optimized; however, the scheduling optimization process must be performed using limited processing (CPU) power.

Several considerations must be taken into account in order to make a scheduler for these systems. This poster highlights requirements such as inter-dependency of onboard systems, and limited windows of …


Testing And Integration Team Project Management, Tyler Leben, Jeremy Straub, Scott Kerlin Dec 2013

Testing And Integration Team Project Management, Tyler Leben, Jeremy Straub, Scott Kerlin

Jeremy Straub

The Testing and Integration Team plays an integral role in the development of the open source CubeSat known as Open Orbiter. Like any project, the Testing Team’s project can benefit from structure and management to effectively utilize it’s time and resources. CSCI 297 teaches the skills needed to turn a good idea into successful endeavor. By applying skills such as effective planning, setting milestones, dealing with changes and supervising to an actual project, Open Orbiter has transformed from a pipe dream to a real, obtainable goal. Doing this has turned learning about project management into more that just power points …


Openorbiter Payload Software, Tim Whitney, Kyle Goehner, Jeremy Straub, Scott Kerlin Dec 2013

Openorbiter Payload Software, Tim Whitney, Kyle Goehner, Jeremy Straub, Scott Kerlin

Jeremy Straub

The Payload Software team is responsible for developing the image processing and task decomposition systems on the Open Orbiter satellite1. The image processing software performs operations to enhance the quality of the images collected by the onboard camera, specifically, mosaicking, which takes multiple images and stitches them together to make a larger image and super resolution, which takes multiple low resolution images of the same area to produce a higher resolution image2,3,4. The task decomposition part of the system decomposes tasks defined by the user into jobs that then get sent to the operating system to be performed. This system …


Project Management For The Openorbiter Operating Software Team, Kelton Karboviak, Dayln Limesand, Michael Hlas, Eric Berg, Christoffer Korvald, Jeremy Straub, Ronald Marsh, Scott Kerlin Dec 2013

Project Management For The Openorbiter Operating Software Team, Kelton Karboviak, Dayln Limesand, Michael Hlas, Eric Berg, Christoffer Korvald, Jeremy Straub, Ronald Marsh, Scott Kerlin

Jeremy Straub

OpenOrbiter is producing a 1-U CubeSat spacecraft1 to facilitate the construction of low-cost2 spacecraft by others in the future. The Operating Software team is in charge of designing and creating the software that controls most of the CubeSat’s operations such as image capturing, storage management, and temperature sensing. The project management deliverables that we have worked on as a team are the Project Definition, Work Breakdown Structure, and the Project Schedule. The Project Definition defines exactly what our project team will be developing including, but not limited to, what the team is in charge of developing, what its not in …


Ground Station Software Team Project Management, Zach Maguire, Marshall Mattingly, Christoffer Korvald, Jeremy Straub, Scott Kerlin Dec 2013

Ground Station Software Team Project Management, Zach Maguire, Marshall Mattingly, Christoffer Korvald, Jeremy Straub, Scott Kerlin

Jeremy Straub

In CSCI 297 class we partake in learning the roles of software team leads and developers. With hands on activities that get us involved in what a real manager of a software team may do such as: defining a project, planning a project, developing a work breakdown structure, estimating the work, developing a project schedule, etc. This work is performed in the context of the OpenOrbiter project which seeks to build a low-cost spacecraft1 that can be produced with a parts budget of approxi-mately $5,0002 by schools worldwide. The ground station software team’s purpose within Open Orbiter project is to …


Software For Openorbiter, Christoffer Korvald, Jeremy Straub, Scott Kerlin, Ronald Marsh Dec 2013

Software For Openorbiter, Christoffer Korvald, Jeremy Straub, Scott Kerlin, Ronald Marsh

Jeremy Straub

The software development effort for the OpenOrbiter project consists of four teams: operating software development, payload software development, ground station software development and testing. These teams are designing and developing the software required to create a turn-key spacecraft design1 which can be produced at a price point of under USD $5,000 by faculty, students and researchers world-wide2. Through this process, students are gaining valuable real-world experience3,4 in areas of indicated interest5. Each team is headed by a team lead who is responsible for conducting weekly meetings and organizing the activities of the team. During the Fall, 2013 semester, team leads …


Payload Software Design And Development For A Remote Sensing Small Spacecraft, Kyle Goehner, Christoffer Korvald, Jeremy Straub, Ronald Marsh Dec 2013

Payload Software Design And Development For A Remote Sensing Small Spacecraft, Kyle Goehner, Christoffer Korvald, Jeremy Straub, Ronald Marsh

Jeremy Straub

Scheduling for a Small Satellite for Remote Sensed Data Collection


A Review Of Online Collaboration Tools Used By The Und Openorbiter Program, Jeremy Straub, Christoffer Korvald May 2013

A Review Of Online Collaboration Tools Used By The Und Openorbiter Program, Jeremy Straub, Christoffer Korvald

Jeremy Straub

The OpenOrbiter program at the University of North Dakota is a student-initiated, student-run effort to design, develop, test, launch and operate a CubeSat-class spacecraft to validate the designs of the Open Prototype for Educational NanoSatellites (a framework that will be made publically-available to allow faster and lower-cost missions at other educational institutions worldwide). OpenOrbiter involves (at various participation levels) over 200 faculty and students spanning five colleges and ten departments. To coordinate this large group of participants who comprise over seventeen teams and work at disjoint hours in a plethora of locations, online project management, software source control and hardware …


Payload Processing Aboard An Open Source Software Cubesat, Jon Sand, Kyle Goehner, Christoffer Korvald, Josh Berk, Jeremy Straub Apr 2013

Payload Processing Aboard An Open Source Software Cubesat, Jon Sand, Kyle Goehner, Christoffer Korvald, Josh Berk, Jeremy Straub

Jeremy Straub

The Open Prototype for Educational NanoSats (OPEN) is a system that focuses on reducing spacecraft mission costs. It provides a set of designs that is freely available to anyone online. The OpenOrbiter CubeSat provides designs to create a small satellite using economical materials available allowing a parts budget of under $5,000. One aspect of this design is CubeSat payload processing software. This is the process of taking a single image, or multiple images taken at the same time, and manipulate them. This manipulation an include compression, mosaicing, super resolution, or any combination thereof. The first step in this process is …


Model-Based Software Engineering For An Imaging Cubesat And Its Extrapolation To Other Missions, Atif Mohammad, Jeremy Straub, Christoffer Korvald, Emanuel Grant Mar 2013

Model-Based Software Engineering For An Imaging Cubesat And Its Extrapolation To Other Missions, Atif Mohammad, Jeremy Straub, Christoffer Korvald, Emanuel Grant

Jeremy Straub

Small satellites with their limited computational capabilities require that software engineering techniques promote efficient use of spacecraft resources. A model-driven approach to software engineering is an excellent solution to this resource maximization challenge as it facilitates visualization of the key solution processes and data elements.

The software engineering process utilized for the OpenOrbiter spacecraft, which is a remote sensing technology demonstrator, is presented. Key challenges presented by the Open Orbiter project included concurrent operation and tasking of five computer-on-module (COM) units and a flight computer and the associated data marshaling between local and general storage. The payload processing system (consisting …


Open Space Box Model: Service Oriented Architecture Framework For Small Spacecraft Collaboration And Control, Atif F. Mohammad, Jeremy Straub Feb 2013

Open Space Box Model: Service Oriented Architecture Framework For Small Spacecraft Collaboration And Control, Atif F. Mohammad, Jeremy Straub

Jeremy Straub

A Cubesat is a small satellite with very less competence to compute, it requires software engineering techniques, which can enhance the computational power for this small box. A model-driven approach of software engineering, which is called OSBM or Open Space Box Modeling technique, is an excellent solution to this re-source maximization challenge. OSBM facilitates apparition of the key solution pro-cesses computation and satellite related data elements using Service Oriented Ar-chitecture 3.0 (SOA 3.0) as base to work on to design services. The key challenges that can be handled by utilizing OSBM include concurrent operation and tasking of few as five …