Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 104

Full-Text Articles in Physical Sciences and Mathematics

Management Practices For Urban Areas In The Hampton Roads Vicinity: Data Files, Gary F. Anderson Jan 2022

Management Practices For Urban Areas In The Hampton Roads Vicinity: Data Files, Gary F. Anderson

Data

During 1980 through 1981, the Virginia Institute of Marine Science conducted studies in the Hampton Roads Virginia vicinity to assess pollutant loading in runoff from various land use types. The 13 urban study areas also included established BMPs such as grassy swales and retention ponds to measure their effectiveness in reducing pollutant loads to the Chesapeake Bay. The focus was on nutrients, BOD and suspended solids. The studies were conducted with support of the U.S. EPA under section 208 of the Federal Clean Water Act.

Methods and results are documented in the associated publication. Data files were processed using SPSS …


Coastal Natural And Nature-Based Features (Nnbfs) Ranked: Co-Benefits For Coastal Buildings And Target Areas For The Creation Of New Or Restoration Of Nnbfs In Coastal Virginia, Pamela Mason, Jessica Hendricks, Julie Herman May 2021

Coastal Natural And Nature-Based Features (Nnbfs) Ranked: Co-Benefits For Coastal Buildings And Target Areas For The Creation Of New Or Restoration Of Nnbfs In Coastal Virginia, Pamela Mason, Jessica Hendricks, Julie Herman

Data

Community resilience to storm-driven coastal flooding is improved with the presence of natural and nature-based features (NNBFs) such as wetlands, wooded areas, living shorelines, and beaches. These natural and created features can provide multiple benefits for a local community, including mitigating the impacts of storm surge and sea-level rise and allowing communities to take advantage of programmatic incentive programs like FEMA’s Community Rating System and nutrient reduction crediting.

As part of a NOAA-funded project NA17NOS4730142, an exportable geospatial protocol and NNBF ranking methodology was developed with the goal of incentivizing the protection and creation of NNBFs across Chesapeake Bay localities …


Gis Data: King & Queen County Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Carl Hershner, Evan Hill Jan 2019

Gis Data: King & Queen County Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Carl Hershner, Evan Hill

Data

The Virginia Institute of Marine Science published the first Tidal marsh Inventories using data collected in the early 1970's. Using high resolution color infra-red imagery from 2009 a new Tidal Marsh Inventory has been developed for the York River Watershed in 2010. Marsh boundaries were generated using heads-up digitizing techniques at a scale of 1:1,000. Each marsh polygon was classified by morphologic type: fringe, extensive, embayed, or marsh island. Marshes were ground-truthed in the field where a community type index was assigned to each marsh based on plant community make-up. Each marsh was also coded with a marsh number which …


Gis Data: King William County Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Carl Hershner, Evan Hill Jan 2019

Gis Data: King William County Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Carl Hershner, Evan Hill

Data

The Virginia Institute of Marine Science published the first Tidal marsh Inventories using data collected in the early 1970's. Using high resolution color infra-red imagery from 2009 a new Tidal Marsh Inventory has been developed for the York River Watershed in 2010. Marsh boundaries were generated using heads-up digitizing techniques at a scale of 1:1,000. Each marsh polygon was classified by morphologic type: fringe, extensive, embayed, or marsh island. Marshes were ground-truthed in the field where a community type index was assigned to each marsh based on plant community make-up. Each marsh was also coded with a marsh number which …


King William County, Virginia Shoreline Inventory Data 2019, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Jessica Hendricks, Carl Hershner, Evan Hill Jan 2019

King William County, Virginia Shoreline Inventory Data 2019, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Jessica Hendricks, Carl Hershner, Evan Hill

Data

The 2019 Inventory for King William County was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1 while viewing conditions observed in 2017 imagery from the Virginia Base Mapping Program (VBMP), Google Earth, and Bing high resolution oblique imagery. Five GIS shapefiles are developed. The first describes land use and bank conditions (KingWilliam_lubc_2019). The second portrays the presence of beaches (KingWilliam_beach_2019). The third reports shoreline structures that are described as arcs or lines (e.g. riprap) (KingWilliam_sstru_2019). The fourth shapefile includes all structures that are represented as points (e.g. piers) (KingWilliam_astru_2019). The Tidal Marsh Inventory is included as the fifth file …


Virginia Non-Tidal Wetland Condition Assessment 2016, Tamia Rudnicky, Kirk J. Havens, Michelle Henicheck, Dave Davis, Kory Angstadt, David Stanhope Jan 2019

Virginia Non-Tidal Wetland Condition Assessment 2016, Tamia Rudnicky, Kirk J. Havens, Michelle Henicheck, Dave Davis, Kory Angstadt, David Stanhope

Data

This data set is a GIS-based landscape (Level one) assessment of the water quality and habitat benefits of non-tidal wetlands from the National Wetlands Inventory (NWI) in Virginia utilizing the 2016 National Land Cover Dataset (NLCD) and 2016 Tiger/Line roads. The model assessment uses remote sensing and GIS technology to characterize land use patterns and features around wetlands such as surrounding land cover and density of roads as well as individual wetland characteristics such as wetland size and type to determine the wetlands overall condition as related to habitat and water quality functions. The water quality analysis determines the percentages …


King And Queen County, Virginia Shoreline Inventory Data 2019, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Jessica Hendricks, Carl Hershner, Evan Hill Jan 2019

King And Queen County, Virginia Shoreline Inventory Data 2019, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Jessica Hendricks, Carl Hershner, Evan Hill

Data

The 2019 Inventory for King and Queen County was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1 while viewing conditions observed in 2017 imagery from the Virginia Base Mapping Program (VBMP), Google Earth, and Bing high resolution oblique imagery. Five GIS shapefiles are developed. The first describes land use and bank conditions (kq_lubc_2019). The second portrays the presence of beaches (kq_beach_2019). The third reports shoreline structures that are described as arcs or lines (e.g. riprap) (kq_sstru_2019). The fourth shapefile includes all structures that are represented as points (e.g. piers) (kq_astru_2019). The Tidal Marsh Inventory is included as the fifth …


Catch The King Tide 2018: All King Tide Data, Jon Derek Loftis Dec 2018

Catch The King Tide 2018: All King Tide Data, Jon Derek Loftis

Data

"Catch the King" is a citizen-science GPS data collection effort centered in Hampton Roads, VA, that seeks to interactively map the King Tide's maximum inundation extents. The goal is to validate and improving predictive model accuracy for future forecasting of increasingly pervasive "nuisance" flooding.


Section: 01 Line Frame: 01, 18 October 2017: Aerial Imagery Acquired To Monitor The Distribution And Abundance Of Submerged Aquatic Vegetation In Chesapeake Bay And Coastal Bays, Robert J. Orth, David J. Wilcox, Jennifer R. Whiting, Anna K. Kenne, Erica R. Smith Jun 2018

Section: 01 Line Frame: 01, 18 October 2017: Aerial Imagery Acquired To Monitor The Distribution And Abundance Of Submerged Aquatic Vegetation In Chesapeake Bay And Coastal Bays, Robert J. Orth, David J. Wilcox, Jennifer R. Whiting, Anna K. Kenne, Erica R. Smith

Data

Multispectral aerial imagery acquired in 2017 to monitor the distribution and abundance of submerged aquatic vegetation in Chesapeake Bay and coastal bays


Section: 01 Line Frame: 06, 27 August 2017: Aerial Imagery Acquired To Monitor The Distribution And Abundance Of Submerged Aquatic Vegetation In Chesapeake Bay And Coastal Bays, Robert J. Orth, David J. Wilcox, Jennifer R. Whiting, Anna K. Kenne, Erica R. Smith Jun 2018

Section: 01 Line Frame: 06, 27 August 2017: Aerial Imagery Acquired To Monitor The Distribution And Abundance Of Submerged Aquatic Vegetation In Chesapeake Bay And Coastal Bays, Robert J. Orth, David J. Wilcox, Jennifer R. Whiting, Anna K. Kenne, Erica R. Smith

Data

Multispectral aerial imagery acquired in 2017 to monitor the distribution and abundance of submerged aquatic vegetation in Chesapeake Bay and coastal bays


Gis Data: New Kent County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Carl Hershner Jan 2018

Gis Data: New Kent County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Carl Hershner

Data

The 2018 Inventory for New Kent County was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1while viewing conditions observed in Bing high resolution oblique imagery, Google Earth, and2017imagery from the Virginia Base Mapping Program (VBMP).Four GIS shapefiles are developed. The first describes land use and bank conditions (New_Kent_lubc_2018). The second portrays the presence of beaches (New_Kent_beaches_2018). The third reports shoreline structures that are described as arcs or lines(e.g. riprap)(New_Kent_sstru_2018). The final shapefile includes all structures that are represented as points(e.g. piers)(New_Kent_astru_2018).The metadata file accompanies the shapefiles and defines attribute accuracy, data development, and any use restrictions that pertain to …


Gis Data:: Arlington County, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Carl Herschner Jan 2018

Gis Data:: Arlington County, Virginia Shoreline Management Model, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Carl Herschner

Data

No abstract provided.


Gis Data: Essex County, Virginia Shoreline Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, David Stanhope, Carl Hershner Jan 2018

Gis Data: Essex County, Virginia Shoreline Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, David Stanhope, Carl Hershner

Data

No abstract provided.


Section: 01 Line Frame: 01 Aug27-17: Aerial Imagery Acquired To Monitor The Distribution And Abundance Of Submerged Aquatic Vegetation In Chesapeake Bay And Coastal Bays, R. J. Orth, David J. Wilcox, Jennifer R. Whiting, Anna K. Kenne, Erica R. Smith Jan 2018

Section: 01 Line Frame: 01 Aug27-17: Aerial Imagery Acquired To Monitor The Distribution And Abundance Of Submerged Aquatic Vegetation In Chesapeake Bay And Coastal Bays, R. J. Orth, David J. Wilcox, Jennifer R. Whiting, Anna K. Kenne, Erica R. Smith

Data

Multispectral aerial imagery acquired in 2017 to monitor the distribution and abundance of submerged aquatic vegetation in Chesapeake Bay and coastal bays.


Gis Data: New Kent County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Carl Hershner Jan 2018

Gis Data: New Kent County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Carl Hershner

Data

No abstract provided.


Gis Data: Caroline County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon A. Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Carl H. Hershner Jan 2018

Gis Data: Caroline County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon A. Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Carl H. Hershner

Data

No abstract provided.


Gis Data: Caroline County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Carl Hershner Jan 2018

Gis Data: Caroline County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Carl Hershner

Data

No abstract provided.


Gis Data: Richmond County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Kory Angstadt, Carl Hershner Jan 2018

Gis Data: Richmond County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Kory Angstadt, Carl Hershner

Data

No abstract provided.


Gis Data: Richmond County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Kory Angstadt, Carl Hershner Jan 2018

Gis Data: Richmond County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, Kory Angstadt, Carl Hershner

Data

No abstract provided.


Gis Data: Essex County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, David Stanhope, Carl Hershner Jan 2018

Gis Data: Essex County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie G. Bradshaw, Jessica Hendricks, David Stanhope, Carl Hershner

Data

No abstract provided.


Gis Data: Arlington County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Carl Herschner Jan 2018

Gis Data: Arlington County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Carl Herschner

Data

No abstract provided.


Catch The King Tide 2017 Data: Hampton, Virginia, Jon Derek Loftis Dec 2017

Catch The King Tide 2017 Data: Hampton, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017. Response from the event's dedicated volunteers, fueled by the local media partners' coverage …


Catch The King Tide 2017 Data: Portsmouth, Virginia, Jon Derek Loftis Dec 2017

Catch The King Tide 2017 Data: Portsmouth, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017. Response from the event's dedicated volunteers, fueled by the local media partners' coverage …


Catch The King Tide 2017 Data: Suffolk, Virginia, Jon Derek Loftis Dec 2017

Catch The King Tide 2017 Data: Suffolk, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017. Response from the event's dedicated volunteers, fueled by the local media partners' coverage …


Catch The King Tide 2017: All King Tide Data, Jon Derek Loftis Dec 2017

Catch The King Tide 2017: All King Tide Data, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017. Response from the event's dedicated volunteers, fueled by the local media partners' coverage …


Gis Data: Chesterfield County And Cities Of Colonial Heights, Petersburg, And Richmond Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Dec 2017

Gis Data: Chesterfield County And Cities Of Colonial Heights, Petersburg, And Richmond Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The 2017 Inventory for Chesterfield County and the Cities of Colonial Heights, Petersburg, and Richmond was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1while viewing conditions observed in Bing high resolution oblique imagery, Google Earth, and2013imagery from the Virginia Base Mapping Program (VBMP).Four GIS shapefiles are developed. The first describes land use and bank conditions (Chesterfield_lubc_2017). The second portrays the presence of beaches (Chesterfield_beaches_2017). The third reports shoreline structures that are described as arcs or lines(e.g. riprap)(Chesterfield_sstru_2017). The final shapefile includes all structures that are represented as points (e.g. piers)(Chesterfield_astru_2017).The metadata file accompanies the shapefiles and defines attribute accuracy, …


Gis Data: King George County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon A. Killeen, Tamia Rudnicky, Julie G. Bradshaw, Kory Angstadt, Karen A. Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Jan 2017

Gis Data: King George County, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Sharon A. Killeen, Tamia Rudnicky, Julie G. Bradshaw, Kory Angstadt, Karen A. Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The 2017 Inventory for King George County was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1 while viewing conditions observed in Bing high resolution oblique imagery, Google Earth, and 2013 imagery from the Virginia Base Mapping Program (VBMP).Four GIS shapefiles are developed. The first describes land use and bank conditions (King_George_lubc_2017). The second portrays the presence of beaches (King_George _beaches_2017). The third reports shoreline structures that are described as arcs or lines(e.g. riprap)(King_George _sstru_2017). The final shapefile includes all structures that are represented as points(e.g. piers)(King_George_astru_2017).The metadata file accompanies the shapefiles and defines attribute accuracy, data development, and any …


Catch The King Tide 2017 Data: Gloucester & Mathews, Virginia, Jon Derek Loftis Jan 2017

Catch The King Tide 2017 Data: Gloucester & Mathews, Virginia, Jon Derek Loftis

Data

"Catch the King" was a citizen science GPS data collection effort centered in Hampton Roads, VA, that sought to map the King Tide's maximum inundation extents with the goal of validating and improving predictive models for future forecasting of increasingly pervasive "nuisance" flooding. GPS data points were collected by volunteers to effectively breadcrumb/trace the high water line by pressing the 'Save Data' button in the Sea Level Rise App every few steps along the water's edge during the high tide on the morning of Nov. 5th, 2017.

Response from the event's dedicated volunteers, fueled by the local media …


Gis Data: Henrico County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner Jan 2017

Gis Data: Henrico County, Virginia Tidal Marsh Inventory, Marcia Berman, Karinna Nunez, Sharon Killeen, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Weiss, Carl Hershner

Data

The 2017 Tidal Marsh Inventory update for Henrico County, Virginia was generated using on-screen digitizing techniques in the most recent version of ArcGIS® - ArcMap while viewing conditions observed in the most recent imagery from the Virginia Base Mapping Program (VBMP). Dominant plant community types were primarily determined during field surveys from shallow-draft boats moving along the shoreline. Land-based surveys were performed in some locations. One shapefile is developed that portrays tidal marsh areas represented as polygons. A metadata file accompanies the shapefile to define attribute accuracy, data development, and any use restrictions that pertain to the data.


Gis Data: The County Of Isle Of Wight, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, Kory Angstadt, Christine Tombleson, David Weiss, Carl Hershner Jan 2017

Gis Data: The County Of Isle Of Wight, Virginia Shoreline Inventory Report, Marcia Berman, Karinna Nunez, Tamia Rudnicky, Julie Bradshaw, Karen Duhring, Kallie Brown, Jessica Hendricks, David Stanhope, Kory Angstadt, Christine Tombleson, David Weiss, Carl Hershner

Data

The 2017 Inventory for the Isle of Wight County was generated using on-screen, digitizing techniques in ArcGIS® -ArcMap v10.4.1while viewing conditions observed in Bing high resolution oblique imagery, Google Earth, and2013imagery from the Virginia Base Mapping Program (VBMP). Four GIS shapefiles are developed. The first describes land use and bank conditions (IsleofWight_lubc_2017). The second portrays the presence of beaches (IsleofWight_beaches_2017). The third reports shoreline structures that are described as arcs or lines(e.g. riprap)(IsleofWight_sstru_2017). The final shapefile includes all structures that are represented as points(e.g. piers)(IsleofWight_astru_2017).The metadata file accompanies the shapefiles and defines attribute accuracy, data development, and any use restrictions …