Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Stars, Interstellar Medium and the Galaxy

University of Nevada, Las Vegas

Planets and satellites: formation

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin Nov 2021

Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin

Physics & Astronomy Faculty Research

The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an updated opacity compilation to model the proto-Jupiter’s envelope. To isolate the 3D effects of convection and recycling, we simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective solutions. Using a passive scalar, we …


Polar Alignment Of A Protoplanetary Disc Around An Eccentric Binary – Iii. Effect Of Disc Mass, Rebecca G. Martin, Stephen H. Lubow Sep 2019

Polar Alignment Of A Protoplanetary Disc Around An Eccentric Binary – Iii. Effect Of Disc Mass, Rebecca G. Martin, Stephen H. Lubow

Physics & Astronomy Faculty Research

An initially sufficiently misaligned low-mass protoplanetary disc around an eccentric binary undergoes damped nodal oscillations of tilt angle and longitude of ascending node. Dissipation causes evolution towards a stationary state of polar alignment in which the disc lies perpendicular to the binary orbital plane with angular momentum aligned to the eccentricity vector of the binary. We use hydrodynamic simulations and analytical methods to investigate how the mass of the disc affects this process. The simulations suggest that a disc with non-zero mass settles into a stationary state in the frame of the binary, the generalized polar state, at somewhat lower …


Alignment Of A Circumbinary Disc Around An Eccentric Binary With Application To Kh 15d, Jeremy L. Smallwood, Stephen H. Lubow, Alessia Franchini, Rebecca G. Martin Apr 2019

Alignment Of A Circumbinary Disc Around An Eccentric Binary With Application To Kh 15d, Jeremy L. Smallwood, Stephen H. Lubow, Alessia Franchini, Rebecca G. Martin

Physics & Astronomy Faculty Research

We analyse the evolution of a mildly inclined circumbinary disc that orbits an eccentric orbit binary by means of smoothed particle hydrodynamics (SPH) simulations and linear theory. We show that the alignment process of an initially misaligned circumbinary disc around an eccentric orbit binary is significantly different than around a circular orbit binary and involves tilt oscillations. The more eccentric the binary, the larger the tilt oscillations and the longer it takes to damp these oscillations. A circumbinary disc that is only mildly inclined may increase its inclination by a factor of a few before it moves towards alignment. The …