Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Mesospheric Gravity Wave Climatology And Variances Over The Andes Mountains, Jonathan Rich Pugmire Dec 2018

Mesospheric Gravity Wave Climatology And Variances Over The Andes Mountains, Jonathan Rich Pugmire

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Look up! Travelling over your head in the air are waves. They are present all the time in the atmosphere all over the Earth. Now imagine throwing a small rock in a pond and watching the ripples spread out around it. The same thing happens in the atmosphere except the rock is a thunderstorm, the wind blowing over a mountain, or another disturbance. As the wave (known as a gravity wave) travels upwards the thinning air allows the wave to grow larger and larger. Eventually the gravity wave gets too large – and like waves on the beach – it …


Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Jun 2012

Upgraded Alo Rayleigh Lidar System And Its Improved Gravity Wave Measurements, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Graduate Student Posters

The Rayleigh-Scatter lidar system at the Atmospheric Lidar Observatory (ALO) on the Utah State campus is currently going through a series of upgrades to significantly improve its observational abilities. A specific objective of these upgrades is to expand the altitude range over which backscattered photons can be collected. A second objective is to increase the sensitivity of the instrument to be able to analyze the raw data at finer temporal and/or spatial resolutions. By measuring relative densities, the system will be able to produce absolute temperatures and relative density perturbations, which illustrate gravity wave structures. Gravity wave studies will significantly …


Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham Apr 2012

Observations With The Most Sensitive Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, Marcus J. Bingham

Graduate Student Posters

The mesosphere is the most unexplored region of the atmosphere. Its altitude range of 50-85 km lies in between the reaches of data collecting instruments like weather balloons and satellites. For this reason, remote sensing systems, such as lidar, which are able to employ ground-based instruments to make extensive measurements in this difficult to detect region. The Rayleigh-scatter lidar at USU is currently being redeveloped to be the most powerful and sensitive of its kind. This type of lidar exploits light and particle interactions, like those that account for the blue color of the sky, to make relative density and …


Polar Mesospheric Cloud Structures Observed From The Cloud Imaging And Particle Size Experiment On The Aeronomy Of Ice In The Mesosphere Spacecraft: Atmospheric Gravity Waves As Drivers For Longitudinal Variability In Polar Mesospheric Cloud Occurrence, A. Chandran, D. W. Rusch, A. W. Merkel, S. E. Palo, G. E. Thomas, Michael J. Taylor, S. M. Bailey, J. M. Russell Iii Jul 2010

Polar Mesospheric Cloud Structures Observed From The Cloud Imaging And Particle Size Experiment On The Aeronomy Of Ice In The Mesosphere Spacecraft: Atmospheric Gravity Waves As Drivers For Longitudinal Variability In Polar Mesospheric Cloud Occurrence, A. Chandran, D. W. Rusch, A. W. Merkel, S. E. Palo, G. E. Thomas, Michael J. Taylor, S. M. Bailey, J. M. Russell Iii

All Physics Faculty Publications

The cloud imaging and particle size (CIPS) experiment is one of three instruments on board the Aeronomy of Ice in the Mesosphere (AIM) spacecraft that was launched into a 600 km Sun‐synchronous orbit on 25 April 2007. CIPS images have shown distinct wave patterns and structures in polar mesospheric clouds (PMCs), around the summertime mesopause region, which are qualitatively similar to structures seen in noctilucent clouds (NLCs) from ground‐based photographs. The structures in PMC are generally considered to be manifestations of upward propagating atmospheric gravity waves (AGWs). Variability of AGW effects on PMC reported at several lidar sites has led …


Modeling The Electrodynamics Of The Low-Latitude Ionosphere, Christian Stephen Wohlwend Dec 2008

Modeling The Electrodynamics Of The Low-Latitude Ionosphere, Christian Stephen Wohlwend

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The electrodynamics of the Earth's low-latitude ionosphere is dependent on the ionospheric conductivity and the thermospheric neutral density, temperature, and winds present. This two-part study focused on the gravity wave seeding mechanism of equatorial plasma depletions in the ionosphere and the associated equatorial spread F, as well as the differences between a two-dimensional flux tube integrated electrodynamics model and a three-dimensional model for the same time period. The gravity wave seeding study was based on a parameterization of a gravity wave perturbation using a background empirical thermosphere and a physics-based ionosphere for the case of 12 UT on 26 September …