Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Physical Sciences and Mathematics

Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl May 2023

Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl

Doctoral Dissertations

In the first part of this dissertation, we cover the development of a diamond semiconductor alpha-tagging sensor for associated particle imaging to solve challenges with currently employed scintillators. The alpha-tagging sensor is a double-sided strip detector made from polycrystalline CVD diamond. The performance goals of the alpha-tagging sensor are 700-picosecond timing resolution and 0.5 mm spatial resolution. A literature review summarizes the methodology, goals, and challenges in associated particle imaging. The history and current state of alpha-tagging sensors, followed by the properties of diamond semiconductors are discussed to close the literature review. The materials and methods used to calibrate the …


Core-Collapse Supernova Simulations With Spectral Two-Moment Neutrino Transport, Ran Chu Dec 2022

Core-Collapse Supernova Simulations With Spectral Two-Moment Neutrino Transport, Ran Chu

Doctoral Dissertations

The primary focus of this dissertation is to develop a next-generation, state-of-the-art neutrino kinetics capability that will be used in the context of the next-generation, state-of-the-art core-collapse supernova (CCSN) simulation frameworks \thornado\ and \FLASH.\index{CCSN} \thornado\ is a \textbf{t}oolkit for \textbf{h}igh-\textbf{or}der \textbf{n}eutrino-r\textbf{ad}iation hydr\textbf{o}dynamics, which is a collection of modules that can be incorporated into a simulation code/framework, such as \FLASH, together with a nuclear equation of state (EOS)\index{EOS} library, such as the \WeakLib\ EOS tables. The first part of this work extends the \WeakLib\ code to compute neutrino interaction rates from~\cite{Bruenn_1985} and produce corresponding opacity tables.\index{Bruenn 1985} The processes of emission, …


Control And Calibration Strategies For Quantum Simulation, Paul M. Kairys May 2022

Control And Calibration Strategies For Quantum Simulation, Paul M. Kairys

Doctoral Dissertations

The modeling and prediction of quantum mechanical phenomena is key to the continued development of chemical, material, and information sciences. However, classical computers are fundamentally limited in their ability to model most quantum effects. An alternative route is through quantum simulation, where a programmable quantum device is used to emulate the phenomena of an otherwise distinct physical system. Unfortunately, there are a number of challenges preventing the widespread application of quantum simulation arising from the imperfect construction and operation of quantum simulators. Mitigating or eliminating deleterious effects is critical for using quantum simulation for scientific discovery. This dissertation develops strategies …


Neutron Star Structure From Electromagnetic And Gravitational Wave Observations, Mohammad Al-Mamun Aug 2021

Neutron Star Structure From Electromagnetic And Gravitational Wave Observations, Mohammad Al-Mamun

Doctoral Dissertations

Neutron star (NS) research primarily relied on spectral observations before the first gravitational wave (GW) detection from the binary neutron star merger was done by the LIGO-VIRGO collaboration. The GW170817 merger event provided mass and tidal deformability Λ˜ constraints for neutron stars. This project used these constraints and associated them with the constraints made by the NS X-ray observations to construct neutron star models. Selective X-ray sources were used in this work, which showed reliable uncertainties from their previous uses. The mass-radius constraints from the electromagnetic (EM) observations were constructed from seven quiescent low-mass X-ray binaries (QLMXBs), three photospheric radius …


Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh Nov 2018

Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh

Doctoral Dissertations

Metamaterials (MMs) are nanocomposite materials consisting of metal-dielectric resonators much smaller in size than the wavelength of the incident light. Common examples of metamaterials are based on split ring resonators (SRRs), parallel wires or strips and fishnet structures. These types of materials are designed and fabricated in order to provide unique optical responses to the incident electromagnetic radiation that are not available in naturally existing materials. The MMs can exhibit unusual properties such as strong magnetism at terahertz (THz) and optical frequencies. Additionally, negative index materials (NIMs) can provide negative index of refraction which can be used in many applications …


Electromagnetic Wave-Matter Interactions In Complex Opto-Electronic Materials And Devices, Raj Kumar Vinnakota Nov 2018

Electromagnetic Wave-Matter Interactions In Complex Opto-Electronic Materials And Devices, Raj Kumar Vinnakota

Doctoral Dissertations

This dissertation explores the fundamentals of light-matter interaction towards applications in the field of Opto-electronic and plasmonic devices. In its core, this dissertation attempts and succeeds in the the modeling of light-matter interactions, which is of high importance for better understanding the rich physics underlying the dynamics of electromagnetic field interactions with charged particles. Here, we have developed a self-consistent multi-physics model of electromagnetism, semiconductor physics and thermal effects which can be readily applied to the field of plasmotronics and Selective Laser Melting (SLM). Plasmotronics; a sub-field of photonics has experienced a renaissance in recent years by providing a large …


Analysis Of Primary Stripper Foils At The Spallation Neutron Source By An Electron Beam Foil Test Stand, Eric Paul Barrowclough Dec 2017

Analysis Of Primary Stripper Foils At The Spallation Neutron Source By An Electron Beam Foil Test Stand, Eric Paul Barrowclough

Doctoral Dissertations

Diamond films are used at the Spallation Neutron Source (SNS) as the primary charge exchange foils (i.e., stripper foils) of the accelerated 1 GeV (Gigaelectron volts) hydride ions. The most common type of film used is a nanocrystalline diamond film, typically 17 mm x 45 mm (millimeter) with an aerial density of 350 μg/cm2 (microgram per square centimeter). The diamond film is deposited on a corrugated silicon substrate using plasma-assisted chemical vapor deposition. After the growth of the diamond film, 30 mm of the silicon substrate is etched away, leaving a freestanding diamond foil with a silicon handle that …


Electromagnetic Properties Of Metal-Dielectric Media And Their Applications, Shravan Rakesh Animilli Apr 2016

Electromagnetic Properties Of Metal-Dielectric Media And Their Applications, Shravan Rakesh Animilli

Doctoral Dissertations

The main objective of this dissertation is to investigate nano-structured random composite materials, which exhibit anomalous phenomena, such as the extraordinary enhancements of linear and non-linear optical processes due to excitation of collective electronic states, surface plasmons (SP). The main goal is to develop a time and memory efficient novel numerical method to study the properties of these random media in three dimensions (3D) by utilization of multi core processing and packages such as MPI for parallel execution. The developed numerical studies are then utilized to provide a comprehensive characterization and optimization of a surface plasmon enhanced solar cell (SPESC) …


Novel Physical Properties Of Non-Trivial Magnetic Materials: Cr1/3nbs2, Mnsi And Fe3gete2, Jieyu Yi May 2015

Novel Physical Properties Of Non-Trivial Magnetic Materials: Cr1/3nbs2, Mnsi And Fe3gete2, Jieyu Yi

Doctoral Dissertations

Helimagnets and quasi-two-dimensional layered materials have attracted much recent interest due to their rich physical properties and potential for spintronics applications. In this dissertation, the helimagnets Cr1/3NbS2 [chromium one-third niobium disulfide] and thin-film MnSi [manganese silicide] as well as the layered magnetic material Fe3GeTe2 [iron three germanium ditelluride] were extensively and carefully studied. Cr1/3NbS2 was previously reported to be helimagnet with a transition temperature of approximately 120 K. Cr1/3NbS2 has a layered structure with Cr3+ ions intercalating between NbS­2 sheets, and is easily cleaved. Using in-situ …


Studies Of Angular Correlations Of Jets With The Atlas Detector, Rajivalochan Subramaniam Oct 2014

Studies Of Angular Correlations Of Jets With The Atlas Detector, Rajivalochan Subramaniam

Doctoral Dissertations

The strong force is one of the four fundamental forces and its strength is given by the coupling constant αs. The theory that describes the strong interaction is Quantum Chromodynamics (QCD) and it explains the interactions between quarks and gluons. The strong coupling constant is the only free parameter in the QCD Lagrangian if the quark masses are fixed. Determinations of αs provide direct tests of perturbative QCD calculations. The collimated sprays of particles originating from the quark and gluon interactions are called jets. The ratio of jet cross sections are sensitive to α s and are …


Analysis, Prototyping, And Design Of An Ionization Profile Monitor For The Spallation Neutron Source Accumulator Ring, Dirk A. Bartkoski Dec 2013

Analysis, Prototyping, And Design Of An Ionization Profile Monitor For The Spallation Neutron Source Accumulator Ring, Dirk A. Bartkoski

Doctoral Dissertations

The Spallation Neutron Source (SNS) located in the Oak Ridge National Laboratory is comprised of a 1 GeV linear H- [H^-] accelerator followed by an accumulator ring that delivers high intensity 1 μs [microsecond] long pulses of 1.5x1014 [1.5x10^14] protons to a liquid mercury target for neutron production by spallation reaction. With its strict 0.01% total beam loss condition, planned power upgrade, and proposed second target station, SNS ring beam-profile diagnostics capable of monitoring evolving beam conditions during high-power conditions are crucial for efficient operation and improvement. By subjecting ionized electrons created during beam interactions with the residual …


Measurement Of [Special Characters Omitted] (Pp[Special Characters Omitted]Tt) In The[Special Characters Omitted]+ Jets Channel Using 4.7 Fb-1 Of Data From The Atlas Experiment Of The Large Hadron Collider, Anirvan Sircar Oct 2013

Measurement Of [Special Characters Omitted] (Pp[Special Characters Omitted]Tt) In The[Special Characters Omitted]+ Jets Channel Using 4.7 Fb-1 Of Data From The Atlas Experiment Of The Large Hadron Collider, Anirvan Sircar

Doctoral Dissertations

The top quark is the heaviest of the known elementary particles in the Standard Model. Top quark decay can result into various final states; therefore, careful study of its production rate and other properties is very important for particle physics. With the shutdown of the Tevatron, The Large Hadron Collider (LHC) is the only facility currently capable of studying top quark properties. The data obtained by proton-proton collisions in the LHC is recorded by two general purpose detectors, ATLAS and CMS. The results in the dissertation are from the ATLAS detector. A new measurement is reported of &sgr;(pp [special …


Generalized Finite-Difference Time-Domain Schemes For Solving Nonlinear Schrödinger Equations, Frederick Ira Moxley Iii Jul 2013

Generalized Finite-Difference Time-Domain Schemes For Solving Nonlinear Schrödinger Equations, Frederick Ira Moxley Iii

Doctoral Dissertations

The nonlinear Schrödinger equation (NLSE) is one of the most widely applicable equations in physical science, and characterizes nonlinear dispersive waves, optics, water waves, and the dynamics of molecules. The NLSE satisfies many mathematical conservation laws. Moreover, due to the nonlinearity, the NLSE often requires a numerical solution, which also satisfies the conservation laws. Some of the more popular numerical methods for solving the NLSE include the finite difference, finite element, and spectral methods such as the pseudospectral, split-step with Fourier transform, and integrating factor coupled with a Fourier transform. With regard to the finite difference and finite element methods, …


Quantitative Techniques For Pet/Ct: A Clinical Assessment Of The Impact Of Psf And Tof, Joshua Donald Schaefferkoetter May 2013

Quantitative Techniques For Pet/Ct: A Clinical Assessment Of The Impact Of Psf And Tof, Joshua Donald Schaefferkoetter

Doctoral Dissertations

Tomographic reconstruction has been a challenge for many imaging applications, and it is particularly problematic for count-limited modalities such as Positron Emission Tomography (PET). Recent advances in PET, including the incorporation of time-of-flight (TOF) information and modeling the variation of the point response across the imaging field (PSF), have resulted in significant improvements in image quality. While the effects of these techniques have been characterized with simulations and mathematical modeling, there has been relatively little work investigating the potential impact of such methods in the clinical setting. The objective of this work is to quantify these techniques in the context …


Development Of A Novel Technique For Predicting Tumor Response In Adaptive Radiation Therapy, Rebecca Marie Seibert Dec 2012

Development Of A Novel Technique For Predicting Tumor Response In Adaptive Radiation Therapy, Rebecca Marie Seibert

Doctoral Dissertations

This dissertation concentrates on the introduction of Predictive Adaptive Radiation Therapy (PART) as a potential method to improve cancer treatment. PART is a novel technique that utilizes volumetric image-guided radiation therapy treatment (IGRT) data to actively predict the tumor response to therapy and estimate clinical outcomes during the course of treatment. To implement PART, a patient database containing IGRT image data for 40 lesions obtained from patients who were imaged and treated with helical tomotherapy was constructed. The data was then modeled using locally weighted regression. This model predicts future tumor volumes and masses and the associated confidence intervals based …


Atomistic Simulations Of The Fusion-Plasma Material Interface, Mostafa Jon Dadras May 2012

Atomistic Simulations Of The Fusion-Plasma Material Interface, Mostafa Jon Dadras

Doctoral Dissertations

A key issue for the successful performance of current and future fusion reactors is understanding chemical and physical processes at the Plasma Material Interface (PMI). The material surfaces may be bombarded by plasma particles in a range of impact energies (1 eV - a few keV) and kept at a range of temperatures (300 - 1000 K). The dominant processes at the PMI are reflection and retention of impacting particles and sputtering (chemical and physical). Sputtering leads to surface erosion and pollution of the plasma, both of which degrade reactor performance. Retention influences the recycling of the plasma, and in …


Water Ice Films In Cryogenic Vacuum Chambers, Jesse Michael Labello Dec 2011

Water Ice Films In Cryogenic Vacuum Chambers, Jesse Michael Labello

Doctoral Dissertations

The space simulation chambers at Arnold Engineering Development Complex (AEDC) allow for the testing and calibration of seeker sensors in cryogenic, high vacuum environments. During operation of these chambers, contaminant films can form on the components in the chamber and disrupt operation. Although these contaminant films can be composed of many molecular species, depending on the species outgassed by warm chamber components and any leaks or virtual leaks (pockets of gas trapped within a vacuum chamber) that may be present, water vapor is most common, and it will be the focus of this dissertation. In this dissertation, some properties of …


Development Of A High Spatial Selectivity Tri-Polar Concentric Ring Electrode For Laplacian Electroencephalography (Leeg) System, Kanthaiah Koka Apr 2006

Development Of A High Spatial Selectivity Tri-Polar Concentric Ring Electrode For Laplacian Electroencephalography (Leeg) System, Kanthaiah Koka

Doctoral Dissertations

Brain activity generates electrical potentials that are spatio-temporal in nature. Electroencephalography (EEG) is the least costly and most widely used non-invasive technique for diagnosing many brain problems. It has high temporal resolution but lacks high spatial resolution.

The surface Laplacian will enhance the spatial resolution of EEG as it performs the second spatial derivative of the surface potentials. In an attempt to increase the spatial selectivity, researchers introduced a bipolar electrode configuration using a five point finite difference method (FPM) and others applied a quasi-bipolar (tri-polar with two elements shorted) concentric electrode configuration. To further increase the spatial resolution, the …


Study Of Energy Sampling Weights In The Dø Detector Using Multiparameter Fitting Method, Qun Yu Apr 2003

Study Of Energy Sampling Weights In The Dø Detector Using Multiparameter Fitting Method, Qun Yu

Doctoral Dissertations

The DØ calorimeter at Fermilab is a sampling calorimeter measuring the energy of particles produced in high energy proton-antiproton collisions. A set of accurate sampling weights is of significant importance to DØ research activity. The objective of this work was to obtain a set of optimized sampling weights for the DØ central calorimeter, the Inter-Cryostat Detector (ICD), the Central Calorimeter Massless Gap (CCMG), and the End Calorimeter Massless Gap (ECMG).

The foundation of the optimization method is that, in high energy physics, the ratio of energy E and the corresponding momentum P of a particle is approximately 1, in units …