Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

In Vitro Monitoring Of Time And Dose Dependent Cytotoxicity Of Aminated Nanoparticles Using Raman Spectroscopy, Esen Efeoglu, Alan Casey, Hugh Byrne Jul 2016

In Vitro Monitoring Of Time And Dose Dependent Cytotoxicity Of Aminated Nanoparticles Using Raman Spectroscopy, Esen Efeoglu, Alan Casey, Hugh Byrne

Articles

No abstract provided.


Spectroscopic Studies Of Anthracyclines: Structural Characterization And In Vitro Tracking, Zeineb Farhane, Hugh Byrne, Malgorzata Baranska Jul 2016

Spectroscopic Studies Of Anthracyclines: Structural Characterization And In Vitro Tracking, Zeineb Farhane, Hugh Byrne, Malgorzata Baranska

Articles

A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488 nm and 785 nm …


A Comparison Of Catabolic Pathways Induced In Primary Macrophages By Pristine Single Walled Carbon Nanotubes And Pristine Graphene, Caroline More, Jennifer Mcintyre, Luke O'Neill, Hugh Byrne Jun 2016

A Comparison Of Catabolic Pathways Induced In Primary Macrophages By Pristine Single Walled Carbon Nanotubes And Pristine Graphene, Caroline More, Jennifer Mcintyre, Luke O'Neill, Hugh Byrne

Articles

Understanding the correlation between the physico-chemical properties of carbonaceous nanomaterials and how these properties impact on cells and subcelluar mechanisms is critical to their risk assessment and safe translation into newly engineered devices. Here the toxicity, uptake and catabolic response of primary human macrophages to pristine graphene (PG) and pristine single walled carbon nanotubes (pSWCNT) are explored, compared and contrasted. The nanomaterial toxicity was assessed using three complementary techniques (live-dead assay, real time impedance technique and confocal microscopic analysis), all of which indicated no signs of acute cytotoxicity in response to PG or pSWCNT. Transmission electron microscopy (TEM) demonstrated that …