Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Abcc9/Sur2 In The Brain: Implications For Hippocampal Sclerosis Of Aging And A Potential Therapeutic Target, Peter T. Nelson, Gregory A. Jicha, Wang-Xia Wang, Eseosa T. Ighodaro, Sergey C. Artiushin, Colin G. Nichols, David W. Fardo Nov 2015

Abcc9/Sur2 In The Brain: Implications For Hippocampal Sclerosis Of Aging And A Potential Therapeutic Target, Peter T. Nelson, Gregory A. Jicha, Wang-Xia Wang, Eseosa T. Ighodaro, Sergey C. Artiushin, Colin G. Nichols, David W. Fardo

Sanders-Brown Center on Aging Faculty Publications

The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium (“K ATP ”) channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The K ATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is …


Development And Validation Of An Epitope Prediction Tool For Swine (Pigmatrix) Based On The Pocket Profile Method, Andres H. Gutiérrez, William D. Martin, Chris Bailey-Kellogg, Frances Terry, Leonard Moise, Anee S. De Groot Sep 2015

Development And Validation Of An Epitope Prediction Tool For Swine (Pigmatrix) Based On The Pocket Profile Method, Andres H. Gutiérrez, William D. Martin, Chris Bailey-Kellogg, Frances Terry, Leonard Moise, Anee S. De Groot

Dartmouth Scholarship

Background: T cell epitope prediction tools and associated vaccine design algorithms have accelerated the development of vaccines for humans. Predictive tools for swine and other food animals are not as well developed, primarily because the data required to develop the tools are lacking. Here, we overcome a lack of T cell epitope data to construct swine epitope predictors by systematically leveraging available human information. Applying the “pocket profile method ”, we use sequence and structural similarities in the binding pockets of human and swine major histocompatibility complex proteins to infer Swine Leukocyte Antigen (SLA) peptide binding preferences. We developed epitope-prediction …