Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

PDF

MBZUAI

Series

Optimization

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Improved Binary Differential Evolution With Dimensionality Reduction Mechanism And Binary Stochastic Search For Feature Selection, Behrouz Ahadzadeh, Moloud Abdar, Fatemeh Safara, Leyla Aghaei, Seyedali Mirjalili, Abbas Khosravi, Salvador García, Fakhri Karray, U. Rajendra Acharya Jan 2024

Improved Binary Differential Evolution With Dimensionality Reduction Mechanism And Binary Stochastic Search For Feature Selection, Behrouz Ahadzadeh, Moloud Abdar, Fatemeh Safara, Leyla Aghaei, Seyedali Mirjalili, Abbas Khosravi, Salvador García, Fakhri Karray, U. Rajendra Acharya

Machine Learning Faculty Publications

Computer systems store massive amounts of data with numerous features, leading to the need to extract the most important features for better classification in a wide variety of applications. Poor performance of various machine learning algorithms may be caused by unimportant features that increase the time and memory required to build a classifier. Feature selection (FS) is one of the efficient approaches to reducing the unimportant features. This paper, therefore, presents a new FS, named BDE-BSS-DR, that utilizes Binary Differential Evolution (BDE), Binary Stochastic Search (BSS) algorithm, and Dimensionality Reduction (DR) mechanism. The BSS algorithm increases the search capability of …


Bare-Bones Based Salp Swarm Algorithm For Text Document Clustering, Mohammed Azmi Al-Betar, Ammar Kamal Abasi, Ghazi Al-Naymat, Kamran Arshad, Sharif Naser Makhadmeh Sep 2023

Bare-Bones Based Salp Swarm Algorithm For Text Document Clustering, Mohammed Azmi Al-Betar, Ammar Kamal Abasi, Ghazi Al-Naymat, Kamran Arshad, Sharif Naser Makhadmeh

Machine Learning Faculty Publications

Text Document Clustering (TDC) is a challenging optimization problem in unsupervised machine learning and text mining. The Salp Swarm Algorithm (SSA) has been found to be effective in solving complex optimization problems. However, the SSA’s exploitation phase requires improvement to solve the TDC problem effectively. In this paper, we propose a new approach, known as the Bare-Bones Salp Swarm Algorithm (BBSSA), which leverages Gaussian search equations, inverse hyperbolic cosine control strategies, and greedy selection techniques to create new individuals and guide the population towards solving the TDC problem. We evaluated the performance of the BBSSA on six benchmark datasets from …


Asynchronous Fdrl-Based Low-Latency Computation Offloading For Integrated Terrestrial And Non-Terrestrial Power Iot, Sifeng Li, Sunxuan Zhang, Zhao Wang, Zhenyu Zhou, Xiaoyan Wang, Shahid Mumtaz, Mohsen Guizani, Valerio Frascolla Sep 2023

Asynchronous Fdrl-Based Low-Latency Computation Offloading For Integrated Terrestrial And Non-Terrestrial Power Iot, Sifeng Li, Sunxuan Zhang, Zhao Wang, Zhenyu Zhou, Xiaoyan Wang, Shahid Mumtaz, Mohsen Guizani, Valerio Frascolla

Machine Learning Faculty Publications

Integrated terrestrial and non-terrestrial power internet of things (IPIoT) has emerged as a paradigm shift to three-dimensional vertical communication networks for power systems in the 6G era. Computation offloading plays key roles in enabling real-time data processing and analysis for electric services. However, computation offloading in IPIoT still faces challenges of coupling between task offloading and computation resource allocation, resource heterogeneity and dynamics, and degraded model training caused by electromagnetic interference (EMI). In this article, we propose an asynchronous federated deep reinforcement learning (AFDRL)-based computation offloading framework for IPIoT, where models are uploaded asynchronously for federated averaging to relieve network …


A Multi-Layer Information Dissemination Model And Interference Optimization Strategy For Communication Networks In Disaster Areas, Yuexia Zhang, Yang Hong, Mohsen Guizani, Sheng Wu, Peiying Zhang, Ruiqi Liu Aug 2023

A Multi-Layer Information Dissemination Model And Interference Optimization Strategy For Communication Networks In Disaster Areas, Yuexia Zhang, Yang Hong, Mohsen Guizani, Sheng Wu, Peiying Zhang, Ruiqi Liu

Machine Learning Faculty Publications

The communication network in disaster areas (CNDA) can disseminate the key disaster information in time and provide basic information support for decision-making and rescuing. Therefore, it is of great significance to study the information dissemination mechanism of CNDA. However, a CNDA is vulnerable to interference, which affects information dissemination and rescuing. To solve this problem, this paper established a multi-layer information dissemination model of CNDA (MMND) which models the CNDA from the perspective of degree distribution of nodes. The information dissemination process and equilibrium state in CNDA is analyzed by an improved dynamic dissemination method. Then, the effects of the …


Corruption-Tolerant Algorithms For Generalized Linear Models, Bhaskar Mukhoty, Debojyoti Dey, Purushottam Kar Jun 2023

Corruption-Tolerant Algorithms For Generalized Linear Models, Bhaskar Mukhoty, Debojyoti Dey, Purushottam Kar

Machine Learning Faculty Publications

This paper presents SVAM (Sequential Variance-Altered MLE), a unified framework for learning generalized linear models under adversarial label corruption in training data. SVAM extends to tasks such as least squares regression, logistic regression, and gamma regression, whereas many existing works on learning with label corruptions focus only on least squares regression. SVAM is based on a novel variance reduction technique that may be of independent interest and works by iteratively solving weighted MLEs over variance-altered versions of the GLM objective. SVAM offers provable model recovery guarantees superior to the state-of-the-art for robust regression even when a constant fraction of training …


Lemurs Optimizer: A New Metaheuristic Algorithm For Global Optimization, Ammar Kamal Abasi, Sharif Naser Makhadmeh, Mohammed Azmi Al-Betar, Osama Ahmad Alomari, Mohammed A. Awadallah, Zaid Abdi Alkareem Alyasseri, Iyad Abu Doush, Ashraf Elnagar, Eman H. Alkhammash, Myriam Hadjouni Oct 2022

Lemurs Optimizer: A New Metaheuristic Algorithm For Global Optimization, Ammar Kamal Abasi, Sharif Naser Makhadmeh, Mohammed Azmi Al-Betar, Osama Ahmad Alomari, Mohammed A. Awadallah, Zaid Abdi Alkareem Alyasseri, Iyad Abu Doush, Ashraf Elnagar, Eman H. Alkhammash, Myriam Hadjouni

Machine Learning Faculty Publications

The Lemur Optimizer (LO) is a novel nature-inspired algorithm we propose in this paper. This algorithm’s primary inspirations are based on two pillars of lemur behavior: leap up and dance hub. These two principles are mathematically modeled in the optimization context to handle local search, exploitation, and exploration search concepts. The LO is first benchmarked on twenty-three standard optimization functions. Additionally, the LO is used to solve three real-world problems to evaluate its performance and effectiveness. In this direction, LO is compared to six well-known algorithms: Salp Swarm Algorithm (SSA), Artificial Bee Colony (ABC), Sine Cosine Algorithm (SCA), Bat Algorithm …


Reconfigurable Intelligent Surfaces And Capacity Optimization: A Large System Analysis, Aris L. Moustakas, George C. Alexandropoulos, Mérouane Debbah Aug 2022

Reconfigurable Intelligent Surfaces And Capacity Optimization: A Large System Analysis, Aris L. Moustakas, George C. Alexandropoulos, Mérouane Debbah

Machine Learning Faculty Publications

Reconfigurable Intelligent Surfaces (RISs), comprising large numbers of low-cost and almost passive metamaterials with tunable reflection properties, have been recently proposed as an enabling technology for programmable wireless propagation environments. In this paper, we present asymptotic closed-form expressions for the mean and variance of the mutual information metric for a multi-antenna transmitter-receiver pair in the presence of multiple RISs, using methods from statistical physics. While nominally valid in the large system limit, we show that the derived Gaussian approximation for the mutual information can be quite accurate, even for modest-sized antenna arrays and metasurfaces. The above results are particularly useful …


Learning To Fuse Asymmetric Feature Maps In Siamese Trackers, Wencheng Han, Xingping Dong, Fahad Shahbaz Khan, Ling Shao, Jianbing Shen Mar 2021

Learning To Fuse Asymmetric Feature Maps In Siamese Trackers, Wencheng Han, Xingping Dong, Fahad Shahbaz Khan, Ling Shao, Jianbing Shen

Computer Vision Faculty Publications

Recently, Siamese-based trackers have achieved promising performance in visual tracking. Most recent Siamese-based trackers typically employ a depth-wise cross-correlation (DW-XCorr) to obtain multi-channel correlation information from the two feature maps (target and search region). However, DW-XCorr has several limitations within Siamese-based tracking: it can easily be fooled by distractors, has fewer activated channels and provides weak discrimination of object boundaries. Further, DW-XCorr is a handcrafted parameter-free module and cannot fully benefit from offline learning on large-scale data. We propose a learnable module, called the asymmetric convolution (ACM), which learns to better capture the semantic correlation information in offline training on …


Molecule Optimization By Explainable Evolution, Binghong Chen, Tianzhe Wang, Chengtao Li, Hanjun Dai, Le Song Jan 2021

Molecule Optimization By Explainable Evolution, Binghong Chen, Tianzhe Wang, Chengtao Li, Hanjun Dai, Le Song

Machine Learning Faculty Publications

Optimizing molecules for desired properties is a fundamental yet challenging task in chemistry, material science, and drug discovery. This paper develops a novel algorithm for optimizing molecular properties via an Expectation-Maximization (EM) like explainable evolutionary process. The algorithm is designed to mimic human experts in the process of searching for desirable molecules and alternate between two stages: the first stage on explainable local search which identifies rationales, i.e., critical subgraph patterns accounting for desired molecular properties, and the second stage on molecule completion which explores the larger space of molecules containing good rationales. We test our approach against various baselines …