Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 696

Full-Text Articles in Physical Sciences and Mathematics

Model-Based Deep Learning For Computational Imaging, Xiaojian Xu Aug 2022

Model-Based Deep Learning For Computational Imaging, Xiaojian Xu

McKelvey School of Engineering Theses & Dissertations

This dissertation addresses model-based deep learning for computational imaging. The motivation of our work is driven by the increasing interests in the combination of imaging model, which provides data-consistency guarantees to the observed measurements, and deep learning, which provides advanced prior modeling driven by data. Following this idea, we develop multiple algorithms by integrating the classical model-based optimization and modern deep learning to enable efficient and reliable imaging. We demonstrate the performance of our algorithms by validating their performance on various imaging applications and providing rigorous theoretical analysis.

The dissertation evaluates and extends three general frameworks, plug-and-play priors (PnP), regularized …


Machine Learning For Analog/Mixed-Signal Integrated Circuit Design Automation, Weidong Cao Aug 2021

Machine Learning For Analog/Mixed-Signal Integrated Circuit Design Automation, Weidong Cao

McKelvey School of Engineering Theses & Dissertations

Analog/mixed-signal (AMS) integrated circuits (ICs) play an essential role in electronic systems by processing analog signals and performing data conversion to bridge the analog physical world and our digital information world.Their ubiquitousness powers diverse applications ranging from smart devices and autonomous cars to crucial infrastructures. Despite such critical importance, conventional design strategies of AMS circuits still follow an expensive and time-consuming manual process and are unable to meet the exponentially-growing productivity demands from industry and satisfy the rapidly-changing design specifications from many emerging applications. Design automation of AMS IC is thus the key to tackling these challenges and has been …


A Collaborative Knowledge-Based Security Risk Assessments Solution Using Blockchains, Tara Thaer Salman May 2021

A Collaborative Knowledge-Based Security Risk Assessments Solution Using Blockchains, Tara Thaer Salman

McKelvey School of Engineering Theses & Dissertations

Artificial intelligence and machine learning have recently gained wide adaptation in building intelligent yet simple and proactive security risk assessment solutions. Intrusion identification, malware detection, and threat intelligence are examples of security risk assessment applications that have been revolutionized with these breakthrough technologies. With the increased risk and severity of cyber-attacks and the distributed nature of modern threats and vulnerabilities, it becomes critical to pose a distributed intelligent assessment solution that evaluates security risks collaboratively. Blockchain, as a decade-old successful distributed ledger technology, has the potential to build such collaborative solutions. However, in order to be used for such solutions, …


Domain Specific Computing In Tightly-Coupled Heterogeneous Systems, Anthony Michael Cabrera Aug 2020

Domain Specific Computing In Tightly-Coupled Heterogeneous Systems, Anthony Michael Cabrera

McKelvey School of Engineering Theses & Dissertations

Over the past several decades, researchers and programmers across many disciplines have relied on Moores law and Dennard scaling for increases in compute capability in modern processors. However, recent data suggest that the number of transistors per square inch on integrated circuits is losing pace with Moores laws projection due to the breakdown of Dennard scaling at smaller semiconductor process nodes. This has signaled the beginning of a new “golden age in computer architecture” in which the paradigm will be shifted from improving traditional processor performance for general tasks to architecting hardware that executes a class of applications in a …


Investigating Single Precision Floating General Matrix Multiply In Heterogeneous Hardware, Steven Harris Aug 2020

Investigating Single Precision Floating General Matrix Multiply In Heterogeneous Hardware, Steven Harris

McKelvey School of Engineering Theses & Dissertations

The fundamental operation of matrix multiplication is ubiquitous across a myriad of disciplines. Yet, the identification of new optimizations for matrix multiplication remains relevant for emerging hardware architectures and heterogeneous systems. Frameworks such as OpenCL enable computation orchestration on existing systems, and its availability using the Intel High Level Synthesis compiler allows users to architect new designs for reconfigurable hardware using C/C++. Using the HARPv2 as a vehicle for exploration, we investigate the utility of several of the most notable matrix multiplication optimizations to better understand the performance portability of OpenCL and the implications for such optimizations on this and …


Elicitation And Aggregation Of Data In Knowledge Intensive Crowdsourcing, Dohoon Kim May 2020

Elicitation And Aggregation Of Data In Knowledge Intensive Crowdsourcing, Dohoon Kim

All Computer Science and Engineering Research

With the significant advance of internet and connectivity, crowdsourcing gained more popularity and various crowdsourcing platforms emerged. This project focuses on knowledge-intensive crowdsourcing, in which agents are presented with the tasks that require certain knowledge in domain. Knowledge-intensive crowdsourcing requires agents to have experiences on the specific domain. With the constraint of resources and its trait as sourcing from crowd, platform is likely to draw agents with different levels of expertise and knowledge and asking same task can result in bad performance. Some agents can give better information when they are asked with more general question or more knowledge-specific task …


A Virtual 4d Ct Scanner, Xiwen Li May 2020

A Virtual 4d Ct Scanner, Xiwen Li

All Computer Science and Engineering Research

4D CT scan is widely used in medical imaging. Images are acquired through phases. In this case, we can track the motion of organs such as heart. However, it also introduces motion artifacts. A lot of research focuses on remove these artifacts. It is difficult to acquire artifact data by a real CT scanner. In this project, we implement a virtual CT machine to simulate the real 4D CT scan. we also conduct experi- ments to check its clinical reality with respect to respiratory and heart motion parameters.


Centrality Of Blockchain, Zixuan Li May 2020

Centrality Of Blockchain, Zixuan Li

All Computer Science and Engineering Research

Decentralization is widely recognized as the property and one of most important advantage of blockchain over legacy systems. However, decentralization is often discussed on the consensus layer and recent research shows the trend of centralization on several subsystem of blockchain. In this project, we measured centralization of Bitcoin and Ethereum on source code, development eco-system, and network node levels. We found that the programming language of project is highly centralized, code clone is very common inside Bitcoin and Ethereum community, and developer contribution distribution is highly centralized. We further discuss how could these centralizations lead to security issues in blockchain. …


Solving Disappearance At Gastech With Visual Analytic Techniques, Saulet Yskak May 2020

Solving Disappearance At Gastech With Visual Analytic Techniques, Saulet Yskak

All Computer Science and Engineering Research

We are living in a society, where images and charts speak louder than words. Therefore, information visualization plays a major role in solving complex problems since it provides a visual summary of data that makes it easier to identify trends and patterns.

In this master project, I propose a web – based visual analytics tool that enables to analyze complex email and time based / event series data. The visual analytics framework uses test data from IEEE VAST Challenge 2014: Mini challenge 1 that concentrated on the disappearance of employees of a fictional GAStech company, but the tool allows users …


The Effects Of Mixed-Initiative Visualization Systems On Exploratory Data Analysis, Alvitta Ottley, Adam Kern Jan 2020

The Effects Of Mixed-Initiative Visualization Systems On Exploratory Data Analysis, Alvitta Ottley, Adam Kern

All Computer Science and Engineering Research

The primary purpose of information visualization is to act as a window between a user and the data. Historically, this has been accomplished via a single-agent framework: the only decision-maker in the relationship between visualization system and analyst is the analyst herself. Yet this framework arose not from first principles, but a necessity. Before this decade, computers were limited in their decision-making capabilities, especially in the face of large, complex datasets and visualization systems. This paper aims to present the design and evaluation of a mixed-initiative system that aids the user in handling large, complex datasets and dense visualization systems. …


Point Cloud Processing With Neural Networks, Stephanie Miller, Jiahao Li Dec 2019

Point Cloud Processing With Neural Networks, Stephanie Miller, Jiahao Li

All Computer Science and Engineering Research

In this project, we explore new techniques and architectures for applying deep neural networks when the input is point cloud data. We first consider applying convolutions on regular pixel and voxel grids, using polynomials of point coordinates and Fourier transforms to get a rich feature representation for all points mapped to the same pixel or voxel. We also apply these ideas to generalize the recently proposed "interpolated convolution", by learning continuous-space kernels as a combination of polynomial and Fourier basis kernels. Experiments on the ModelNet40 dataset demonstrate that our methods have superior performance over the baselines in 3D object recognition.


Static Taint Analysis Of Binary Executables Using Architecture-Neutral Intermediate Representation, Elaine Cole Dec 2019

Static Taint Analysis Of Binary Executables Using Architecture-Neutral Intermediate Representation, Elaine Cole

All Computer Science and Engineering Research

Ghidra, National Security Agency’s powerful reverse engineering framework, was recently released open-source in April 2019 and is capable of lifting instructions from a wide variety of processor architectures into its own register transfer language called p-code. In this project, we present a new tool which leverages Ghidra’s specific architecture-neutral intermediate representation to construct a control flow graph modeling all program executions of a given binary and apply static taint analysis. This technique is capable of identifying the information flow of malicious input from untrusted sources that may interact with key sinks or parts of the system without needing access to …


Pipelined Parallelism In A Work-Stealing Scheduler, Thomas Kelly Sep 2019

Pipelined Parallelism In A Work-Stealing Scheduler, Thomas Kelly

All Computer Science and Engineering Research

A pipeline is a particular type of parallel program structure, often used to represent loops with cross-iteration dependencies. Pipelines cannot be expressed with the typical parallel language constructs offered by most environments. Therefore, in order to run pipelines, it is necessary to write a parallel language and scheduler with specialized support for them. Some such schedulers are written exclusively for pipelines and unable to run any other type of program, which allows for certain optimizations that take advantage of the pipeline structure. Other schedulers implement support for pipelines on top of a general-purpose scheduling algorithm. One example of such an …


Polarization Division Multiplexing For Optical Data Communications, Darko Ivanovich Aug 2019

Polarization Division Multiplexing For Optical Data Communications, Darko Ivanovich

McKelvey School of Engineering Theses & Dissertations

Multiple parallel channels are ubiquitous in optical communications, with spatial division multiplexing (separate physical paths) and wavelength division multiplexing (separate optical wavelengths) being the most common forms. In this research work, we investigate the viability of polarization division multiplexing, the separation of distinct parallel optical communication channels through the polarization properties of light. We investigate polarization division multiplexing based optical communication systems in five distinct parts. In the first part of the work, we define a simulation model of two or more linearly polarized optical signals (at different polarization angles) that are transmitted through a common medium (e.g., air), filtered …


Decoupling Information And Connectivity Via Information-Centric Transport, Hila Ben Abraham Aug 2019

Decoupling Information And Connectivity Via Information-Centric Transport, Hila Ben Abraham

McKelvey School of Engineering Theses & Dissertations

The power of Information-Centric Networking architectures (ICNs) lies in their abstraction for communication --- the request for named data. This abstraction was popularized by the HyperText Transfer Protocol (HTTP) as an application-layer abstraction, and was extended by ICNs to also serve as their network-layer abstraction. In recent years, network mechanisms for ICNs, such as scalable name-based forwarding, named-data routing and in-network caching, have been widely explored and researched. However, to the best of our knowledge, the impact of this network abstraction on ICN applications has not been explored or well understood. The motivation of this dissertation is to address this …


Management And Security Of Multi-Cloud Applications, Lav Gupta May 2019

Management And Security Of Multi-Cloud Applications, Lav Gupta

McKelvey School of Engineering Theses & Dissertations

Single cloud management platform technology has reached maturity and is quite successful in information technology applications. Enterprises and application service providers are increasingly adopting a multi-cloud strategy to reduce the risk of cloud service provider lock-in and cloud blackouts and, at the same time, get the benefits like competitive pricing, the flexibility of resource provisioning and better points of presence. Another class of applications that are getting cloud service providers increasingly interested in is the carriers' virtualized network services. However, virtualized carrier services require high levels of availability and performance and impose stringent requirements on cloud services. They necessitate the …


Real-Time Reliable Middleware For Industrial Internet-Of-Things, Chao Wang May 2019

Real-Time Reliable Middleware For Industrial Internet-Of-Things, Chao Wang

McKelvey School of Engineering Theses & Dissertations

This dissertation contributes to the area of adaptive real-time and fault-tolerant systems research, applied to Industrial Internet-of-Things (IIoT) systems. Heterogeneous timing and reliability requirements arising from IIoT applications have posed challenges for IIoT services to efficiently differentiate and meet such requirements. Specifically, IIoT services must both differentiate processing according to applications' timing requirements (including latency, event freshness, and relative consistency of each other) and enforce the needed levels of assurance for data delivery (even as far as ensuring zero data loss). It is nontrivial for an IIoT service to efficiently differentiate such heterogeneous IIoT timing/reliability requirements to fit each application, …


Toward Controllable And Robust Surface Reconstruction From Spatial Curves, Zhiyang Huang May 2019

Toward Controllable And Robust Surface Reconstruction From Spatial Curves, Zhiyang Huang

McKelvey School of Engineering Theses & Dissertations

Reconstructing surface from a set of spatial curves is a fundamental problem in computer graphics and computational geometry. It often arises in many applications across various disciplines, such as industrial prototyping, artistic design and biomedical imaging. While the problem has been widely studied for years, challenges remain for handling different type of curve inputs while satisfying various constraints. We study studied three related computational tasks in this thesis. First, we propose an algorithm for reconstructing multi-labeled material interfaces from cross-sectional curves that allows for explicit topology control. Second, we addressed the consistency restoration, a critical but overlooked problem in applying …


Smart Home Audio Assistant, Xipeng Wang May 2019

Smart Home Audio Assistant, Xipeng Wang

All Computer Science and Engineering Research

This report introduces an audio processing algorithm. It provides a way to access smart devices using audio. Although there are many audio assistants already on the market, most of them will not be able to control the smart devices. Therefore, this new system presented in this report will provide a way to analysis the customer’s questions. Then the algorithm will be able to query smart device information, modify the schedule or provide the reason for some arrangement.


A Survey On The Role Of Individual Differences On Visual Analytics Interactions: Masters Project Report, Jesse Huang, Alvitta Ottley May 2019

A Survey On The Role Of Individual Differences On Visual Analytics Interactions: Masters Project Report, Jesse Huang, Alvitta Ottley

All Computer Science and Engineering Research

There is ample evidence in the visualization commu- nity that individual differences matter. These prior works high- light various traits and cognitive abilities that can modulate the use of the visualization systems and demonstrate a measurable influence on speed, accuracy, process, and attention. Perhaps the most important implication of this body of work is that we can use individual differences as a mechanism for estimating people’s potential to effectively leverage visual interfaces or to identify those people who may struggle. As visual literacy and data fluency continue to become essential skills for our everyday lives, we must embrace the growing …


Challenges In Integrating Iot In Smart Home, Leiquan Pan, Chenyang Lu Apr 2019

Challenges In Integrating Iot In Smart Home, Leiquan Pan, Chenyang Lu

All Computer Science and Engineering Research

Wireless devices have become a major part in Smart Home industry. Almost every smart home company has its own wireless solutions and cloud services. Normally, customers can only monitor and control smart devices through applications or platforms companies provided. It causes inconveniences and problems when we have lots of smart devices. In my master project, I did two projects to implement smart home IoT applications. From a single functionality IoT application to a more complicated smart home system, there are lots of challenges and problems appeared. This article will mainly focus on challenges in integrating IoT in a smart home.


Feature Extraction Form Ct Scan Of Plant Root, Chunyuan Li Apr 2019

Feature Extraction Form Ct Scan Of Plant Root, Chunyuan Li

All Computer Science and Engineering Research

Roots are vital for plant by absorbing water and nutrients and providing anchorage from beneath the soil. These roles are closely related to the roots’ architecture, which describes the geometry of individual roots and their branching structure. We proposed a pipeline to efficiently annotate root architecture. My contribution focus on building an interactive tool to visual and annotate root architecture. Besides, we come up with heuristics to automate the annotation process.


Computational Geometry Teaching Tool, Yujie Zhou, Tao Ju Apr 2019

Computational Geometry Teaching Tool, Yujie Zhou, Tao Ju

All Computer Science and Engineering Research

When students are taking Computational Geometry course which covers many geometry algorithms, most of them are difficult to follow because these algorithms are very abstract even if authors draw pictures to illustrate. In order to help students to get a better understanding of these algorithms, we decide to design Computational Geometry Teaching Tool. This tool is a web application that covers 8 geometry algorithms : Graham Scan, Quick Hull, Line Segment Intersection, Dual, Line Arrangement, Voronoi Diagram, Incremental Delaunay Triangulation and Kd Tree. First, this tool is developed by using JavaScript so that users don't need to install any software …


Nanopower Analog Frontends For Cyber-Physical Systems, Kenji Aono Dec 2018

Nanopower Analog Frontends For Cyber-Physical Systems, Kenji Aono

McKelvey School of Engineering Theses & Dissertations

In a world that is increasingly dominated by advances made in digital systems, this work will explore the exploiting of naturally occurring physical phenomena to pave the way towards a self-powered sensor for Cyber-Physical Systems (CPS). In general, a sensor frontend can be broken up into a handful of basic stages: transduction, filtering, energy conversion, measurement, and interfacing. One analog artifact that was investigated for filtering was the physical phenomenon of hysteresis induced in current-mode biquads driven near or at their saturation limit. Known as jump resonance, this analog construct facilitates a higher quality factor to be brought about without …


Self-Powered Time-Keeping And Time-Of-Occurrence Sensing, Liang Zhou Aug 2018

Self-Powered Time-Keeping And Time-Of-Occurrence Sensing, Liang Zhou

McKelvey School of Engineering Theses & Dissertations

Self-powered and passive Internet-of-Things (IoT) devices (e.g. RFID tags, financial assets, wireless sensors and surface-mount devices) have been widely deployed in our everyday and industrial applications. While diverse functionalities have been implemented in passive systems, the lack of a reference clock limits the design space of such devices used for applications such as time-stamping sensing, recording and dynamic authentication. Self-powered time-keeping in passive systems has been challenging because they do not have access to continuous power sources. While energy transducers can harvest power from ambient environment, the intermittent power cannot support continuous operation for reference clocks. The thesis of this …


Security Services Using Blockchains: A State Of The Art Survey, Maeda Zolanvari, Aiman Erbad, Raj Jain, Mohammed Samaka Aug 2018

Security Services Using Blockchains: A State Of The Art Survey, Maeda Zolanvari, Aiman Erbad, Raj Jain, Mohammed Samaka

All Computer Science and Engineering Research

This article surveys blockchain-based approaches for several security services. These services include authentication, confidentiality, privacy and access control list (ACL), data and resource provenance, and integrity assurance. All these services are critical for the current distributed applications, especially due to the large amount of data being processed over the networks and the use of cloud computing. Authentication ensures that the user is who he/she claims to be. Confidentiality guarantees that data cannot be read by unauthorized users. Privacy provides the users the ability to control who can access their data. Provenance allows an efficient tracking of the data and resources …


Decoupling Information And Connectivity In Information-Centric Networking, Hila Ben Abraham, Jyoti Parwatikar, John Dehart, Adam Drescher, Patrick Crowley Jul 2017

Decoupling Information And Connectivity In Information-Centric Networking, Hila Ben Abraham, Jyoti Parwatikar, John Dehart, Adam Drescher, Patrick Crowley

All Computer Science and Engineering Research

This paper introduces and demonstrates the concept of Information-Centric Transport as a mechanism for cleanly decoupling the information plane from the connectivity plane in Information-Centric Networking (ICN) architectures, such as NDN and CICN. These are coupled in today's incarnations of NDN and CICN through the use of forwarding strategy, which is the architectural component for deciding how to forward packets in the presence of either multiple next-hop options or dynamic feedback. As presently designed, forwarding strategy is not sustainable: application developers can only confidently specify strategy if they understand connectivity details, while network node operators can only confidently assign strategies …


Multipath And Rate Stability, Junjie Liu, Roch A. Guérin Dec 2016

Multipath And Rate Stability, Junjie Liu, Roch A. Guérin

All Computer Science and Engineering Research

Originally Published In Proc. IEEE Globecom Conference - CQRM: Communication QoS, Reliability & Modeling Symposium


In-Network Retransmissions In Named Data Networking, Hila Ben Abraham, Patrick Crowley Jul 2016

In-Network Retransmissions In Named Data Networking, Hila Ben Abraham, Patrick Crowley

All Computer Science and Engineering Research

The strategy layer is an important architectural component in both Content-Centric Networking (CCN) and Named Data Networking (NDN). This component introduces a new forwarding model that allows an application to configure its namespace with a forwarding strategy. A core mechanism in every forwarding strategy is the decision of whether to retransmit an unsatisfied Interest or to wait for an application retransmission. While some applications request control of all retransmissions, others rely on the assumption that the strategy will retransmit an Interest when it is not satisfied. Although an application can select the forwarding strategy used in the local host, it …


Mercator (Mapping Enumerator For Cuda) User's Manual, Stephen V. Cole, Jeremy Buhler Jul 2016

Mercator (Mapping Enumerator For Cuda) User's Manual, Stephen V. Cole, Jeremy Buhler

All Computer Science and Engineering Research

Welcome to the MERCATOR user's manual! MERCATOR is a CUDA/C++ system designed to assist you in writing efficient CUDA applications by automatically generating significant portions of the GPU-side application code. We hope you find it helpful; please feel free to contact the authors with any questions or feedback.