Open Access. Powered by Scholars. Published by Universities.®

Other Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

Selected Works

Articles 1 - 3 of 3

Full-Text Articles in Other Medicine and Health Sciences

Using Raman Spectroscopy To Improve Hyperpolarized Noble Gas Production For Clinical Lung Imaging Techniques, Jonathan R. Birchall, Nicholas Whiting, Jason G. Skinner, Michael J. Barlow, Boyd M. Goodson Dec 2016

Using Raman Spectroscopy To Improve Hyperpolarized Noble Gas Production For Clinical Lung Imaging Techniques, Jonathan R. Birchall, Nicholas Whiting, Jason G. Skinner, Michael J. Barlow, Boyd M. Goodson

Nicholas Whiting

Spin-exchange optical pumping (SEOP) can be used to “hyperpolarize” 129Xe for human lung MRI. SEOP involves transfer of angular momentum from light to an alkali metal (Rb) vapor, and then onto 129Xe nuclear spins during collisions; collisions between excited Rb and N2 ensure that incident optical energy is nonradiatively converted into heat. However, because variables that govern SEOP are temperature-dependent, the excess heat can complicate efforts to maximize spin polarization—particularly at high laser fluxes and xenon densities. Ultra-low frequency Raman spectroscopy may be used to perform in situ gas temperature measurements to investigate the interplay of energy thermalization and SEOP …


Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya Dec 2015

Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya

Nicholas Whiting

Many existing and emerging techniques of interrogating metabolism in brain cancer are at an early stage of development. A few clinical trials that employ these techniques are in progress in patients with brain cancer to establish the clinical efficacy of these techniques. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy.


Near-Unity Nuclear Polarization With An Open-Source 129xe Hyperpolarizer For Nmr And Mri, Panayiotis Nikolaou, Aaron M. Coffey, Laura L. Walkup, Brogan M. Gust, Nicholas Whiting, Hayley Newton, Scott Barcus, Iga Muradyan, Mikayel Dabaghyan, Gregory D. Moroz, Matthew S. Rosen, Samuel Patz, Michael J. Barlow, Eduard Y. Chekmenev, Boyd M. Goodson Aug 2013

Near-Unity Nuclear Polarization With An Open-Source 129xe Hyperpolarizer For Nmr And Mri, Panayiotis Nikolaou, Aaron M. Coffey, Laura L. Walkup, Brogan M. Gust, Nicholas Whiting, Hayley Newton, Scott Barcus, Iga Muradyan, Mikayel Dabaghyan, Gregory D. Moroz, Matthew S. Rosen, Samuel Patz, Michael J. Barlow, Eduard Y. Chekmenev, Boyd M. Goodson

Nicholas Whiting

The exquisite NMR spectral sensitivity and negligible reactivity of hyperpolarized xenon-129 (HP129Xe) make it attractive for a number of magnetic resonance applications; moreover, HP129Xe embodies an alternative to rare and nonrenewable 3He. However, the ability to reliably and inexpensively produce large quantities of HP129Xe with sufficiently high 129Xe nuclear spin polarization (PXe) remains a significant challenge—particularly at high Xe densities. We present results from our “open-source” large-scale (∼1 L/h) 129Xe polarizer for clinical, preclinical, and materials NMR and MRI research. Automated and composed mostly of off-the-shelf components, this “hyperpolarizer” is designed to be readily implementable in other laboratories. The device …