Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organisms

Pseudomonas Aeruginosa Ampr Transcriptional Regulatory Network, Deepak Balasubramanian Mar 2013

Pseudomonas Aeruginosa Ampr Transcriptional Regulatory Network, Deepak Balasubramanian

FIU Electronic Theses and Dissertations

In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion …


Pseudomonas Aeruginosa-Candida Albicans Interactions: Localization And Fungal Toxicity Of A Phenazine Derivative, Jane Gibson, Arpanah Sood, Deborah A. Hogan Nov 2008

Pseudomonas Aeruginosa-Candida Albicans Interactions: Localization And Fungal Toxicity Of A Phenazine Derivative, Jane Gibson, Arpanah Sood, Deborah A. Hogan

Dartmouth Scholarship

Phenazines are redox-active small molecules that play significant roles in the interactions between pseudomonads and diverse eukaryotes, including fungi. When Pseudomonas aeruginosa and Candida albicans were cocultured on solid medium, a red pigmentation developed that was dependent on P. aeruginosa phenazine biosynthetic genes. Through a genetic screen in combination with biochemical experiments, it was found that a P. aeruginosa-produced precursor to pyocyanin, proposed to be 5-methyl-phenazinium-1-carboxylate (5MPCA), was necessary for the formation of the red pigmentation. The 5MPCA-derived pigment was found to accumulate exclusively within fungal cells, where it retained the ability to be reversibly oxidized and reduced, and its …