Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Gene transfer

2017

Articles 1 - 1 of 1

Full-Text Articles in Organisms

Targeted Aav5-Smad7 Gene Therapy Inhibits Corneal Scarring In Vivo, Suneel Gupta, Jason T. Rodier, Ajay Sharma, Elizabeth A. Giuliano, Prashant R. Sinha, Nathan P. Hesemann, Arkasubhra Ghosh, Rajiv R. Mohan Mar 2017

Targeted Aav5-Smad7 Gene Therapy Inhibits Corneal Scarring In Vivo, Suneel Gupta, Jason T. Rodier, Ajay Sharma, Elizabeth A. Giuliano, Prashant R. Sinha, Nathan P. Hesemann, Arkasubhra Ghosh, Rajiv R. Mohan

Pharmacy Faculty Articles and Research

Corneal scarring is due to aberrant activity of the transforming growth factor β (TGFβ) signaling pathway following traumatic, mechanical, infectious, or surgical injury. Altered TGFβ signaling cascade leads to downstream Smad (Suppressor of mothers against decapentaplegic) protein-mediated signaling events that regulate expression of extracellular matrix and myogenic proteins. These events lead to transdifferentiation of keratocytes into myofibroblasts through fibroblasts and often results in permanent corneal scarring. Hence, therapeutic targets that reduce transdifferentiation of fibroblasts into myofibroblasts may provide a clinically relevant approach to treat corneal fibrosis and improve long-term visual outcomes. Smad7 protein regulates the functional effects of TGFβ signaling …