Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organisms

Plasticity In The Human Gut Microbiome Defies Evolutionary Constraints, Andres Gomez, Ashok Kumar Sharma, Elizabeth K. Mallott, Klara J. Petrzelkova, Carolyn A. Jost Robinson, Carl J. Yeoman, Franck Carbonero, Barbora Pafco, Jessica M. Rothman, Alexander Ulanov, Klara Vickova, Katherine R. Amato, Stephanie L. Schnorr, Nathaniel J. Dominy, David Modry, Angelique Todd, Manolito Torralba, Karen E. Nelson, Michael B. Burns, Ran Blekhman, Melissa Remis, Rebecca M. Stumpf, Brenda A. Wilson, H. Rex Gaskins, Paul A. Garber, Bryan A. White, Steven R. Leigh Jul 2019

Plasticity In The Human Gut Microbiome Defies Evolutionary Constraints, Andres Gomez, Ashok Kumar Sharma, Elizabeth K. Mallott, Klara J. Petrzelkova, Carolyn A. Jost Robinson, Carl J. Yeoman, Franck Carbonero, Barbora Pafco, Jessica M. Rothman, Alexander Ulanov, Klara Vickova, Katherine R. Amato, Stephanie L. Schnorr, Nathaniel J. Dominy, David Modry, Angelique Todd, Manolito Torralba, Karen E. Nelson, Michael B. Burns, Ran Blekhman, Melissa Remis, Rebecca M. Stumpf, Brenda A. Wilson, H. Rex Gaskins, Paul A. Garber, Bryan A. White, Steven R. Leigh

Anthropology Faculty Research

The gut microbiome of primates, including humans, is reported to closely follow host evolutionary history, with gut microbiome composition being specific to the genetic background of its primate host. However, the comparative models used to date have mainly included a limited set of closely related primates. To further understand the forces that shape the primate gut microbiome, with reference to human populations, we expanded the comparative analysis of variation among gut microbiome compositions and their primate hosts, including 9 different primate species and 4 human groups characterized by a diverse set of subsistence patterns (n = 448 samples). The results …


Author Correction: Fuctional Eubacteria Species Along With Transdomain Gut Inhabitants Favour Dysgenic Diversity In Oxalate Stone Disease, Mangesh V. Suryananshi, Shrikant S. Bhute, Rahul P. Gune, Yogesh S. Shouche May 2019

Author Correction: Fuctional Eubacteria Species Along With Transdomain Gut Inhabitants Favour Dysgenic Diversity In Oxalate Stone Disease, Mangesh V. Suryananshi, Shrikant S. Bhute, Rahul P. Gune, Yogesh S. Shouche

Life Sciences Faculty Research

This Article contains an error in the order of the Figures. Figures 2, 3 and 4 were published as Figures 4, 2, and 3 respectively. The correct Figures 2, 3 and 4 appear below as Figs 1, 2 and 3respectively. The Figure legends are correct.