Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Organisms

The Potential For Dickeya Dianthicola To Be Vectored By Two Common Insect Pests Of Potatoes, Jonas K. Insinga Dec 2019

The Potential For Dickeya Dianthicola To Be Vectored By Two Common Insect Pests Of Potatoes, Jonas K. Insinga

Electronic Theses and Dissertations

Dickeya dianthicola (Samson) causing blackleg and soft rot was first detected in potatoes grown in Maine in 2014. Previous work has suggested that insects, particularly aphids, may be able to vector bacteria in this genus between plants, but no conclusive work has been done to confirm this theory. In order to determine whether insect-mediated transmission is likely to occur in potato fields, two model potato pests common in Maine were used: the Colorado potato beetle (Leptinotarsa decimlineata Say) and the green peach aphids (Myzus persicae Sulzer). Olfactometry and recruitment experiments evaluated if either insect discriminates between infected and …


Infection Potential Of Rickettsia Felis Via Ingestion, Matthew M. Schexnayder Jul 2019

Infection Potential Of Rickettsia Felis Via Ingestion, Matthew M. Schexnayder

LSU Master's Theses

Rickettsia felis is the etiologic agent of flea-borne spotted fever (FBSF) in humans and a poorly described cause of fever in animals. It is transmitted by its primary arthropod vector and reservoir host, the cat flea Ctenocephalides felis. Known routes of Rickettsia felis transmission between Rickettsia felis-infected cat fleas and vertebrate hosts include cutaneous bites and contamination of cutaneous wounds with infective flea feces. The bulk of FBSF infections occur in young children in Africa, though infections of people at all ages all over the world have been confirmed. As mammals and young children frequently come into contact …


A Rapid Viability And Drug‑Susceptibility Assay Utilizing Mycobacteriophage As An Indicator Of Drug Susceptibilities Of Anti‑Tb Drugs Against Mycobacterium Smegmatis Mc2 155, Gillian Catherine Crowley, Jim O'Mahony, Aidan Coffey, Riona G. Sayers, Paul D. Cotter Jun 2019

A Rapid Viability And Drug‑Susceptibility Assay Utilizing Mycobacteriophage As An Indicator Of Drug Susceptibilities Of Anti‑Tb Drugs Against Mycobacterium Smegmatis Mc2 155, Gillian Catherine Crowley, Jim O'Mahony, Aidan Coffey, Riona G. Sayers, Paul D. Cotter

Department of Biological Sciences Publications

Background: A rapid in-house TM4 mycobacteriophage-based assay, to identify multidrug resistance against various anti-tuberculosis drugs, using the fast-growing Mycobacterium smegmatis mc2 155 in a microtiter plate format was evaluated, based on phage viability assays. Methods: A variety of parameters were optimized before the study including the minimum incubation time for the drugs, phage and M. smegmatis mc2 155 to be in contact. An increase in phage numbers over 2 h was indicative that M. smegmatis mc2 155 is resistant to the drugs under investigation, however when phage numbers remained static, M. smegmatis mc2 155 found to …


Adaptation Of The Streptococcal Collagen-Like Protein 1, Scl1, Of Group A Streptococcus To Recognize Fibronectin Type Iii Repeats, Dudley H. Mcnitt Jan 2019

Adaptation Of The Streptococcal Collagen-Like Protein 1, Scl1, Of Group A Streptococcus To Recognize Fibronectin Type Iii Repeats, Dudley H. Mcnitt

Graduate Theses, Dissertations, and Problem Reports

Background: Group A Streptococcus (GAS) is responsible more than 700 million infections worldwide each year. Most of these infections start with initial colonization of the throat and skin, which is augmented by surface adhesins. The streptococcal collagen-like protein 1 (Scl1) is a major adhesin expressed by GAS that contains an N-terminal sequence-variable (V) domain, protruded away from the cell surface by the collagen domain. The Scl-V domain is comprised of three pairs of anti-parallel α-helices interconnected by surface-exposed loops. For attachment, GAS adhesins require a portal of entry, such as a wound or breach in the epithelium, to enter …