Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Organisms

Characterization Of The Physical And Chemical Effect Of Membrane Disruption And Protein Inhibiting Treatments On E. Coli, Khadijah Wright Jan 2020

Characterization Of The Physical And Chemical Effect Of Membrane Disruption And Protein Inhibiting Treatments On E. Coli, Khadijah Wright

Honors Undergraduate Theses

The increase in antibacterial resistance has placed the issue of microbial multi-drug resistance on a global stage (Gurunathan, 2019). This issue poses a threat to human and animal health as well as to the environment (Aslam et al., 2018). It affects not only the efficacy of treatment but also how those treatments are conducted (Friedman, Temkin, & Carmeli, 2016). As a result of this ongoing threat, new treatments that have potent effects on bacteria are necessary. One scientific response to this issue has been the development of multifunctional nanoparticles (NPs)(H. Wang et al., 2018). NPs have the ability to be …


Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach Jan 2018

Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach

Honors Undergraduate Theses

Polyamines are a class of essential nutrients involved in many basic cellular processes such as gene expression, cell proliferation, and apoptosis. Without polyamines, cell growth is delayed or halted. Cancerous cells require an abundance of polyamines through a combination of synthesis and transport from the extracellular environment. An FDA-approved drug, D,L-α-difluoromethylornithine (DFMO), blocks polyamine synthesis but is ineffective at inhibiting cell growth due to polyamine transport. Thus, there is a need to develop drugs that inhibit polyamine transport to use in combination with DFMO. Surprisingly, little is known about the polyamine transport system in humans and other eukaryotes. Understanding the …


An Rnai Screen To Identify Components Of A Polyamine Transport System, Adam J. Foley Jan 2017

An Rnai Screen To Identify Components Of A Polyamine Transport System, Adam J. Foley

Honors Undergraduate Theses

Polyamines, specifically putrescine, spermidine, and spermine, are small cationic molecules found in all organisms. Cells can biosynthetically make these molecules, or alternatively, they can be transported from the extracellular environment. Malignant cells have been shown to require relatively high amounts of polyamines. There is a chemotherapeutic agent, DFMO, used to block the biosynthesis of polyamines. Many malignant cells can circumvent DFMO therapy by activating their transport system. A potential solution is to simultaneously block biosynthesis and transport of polyamines. However, little is known about the polyamine transport system in higher eukaryotes.

This thesis aims to add to the basic biological …