Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Organisms

Characterization Of The Physical And Chemical Effect Of Membrane Disruption And Protein Inhibiting Treatments On E. Coli, Khadijah Wright Jan 2020

Characterization Of The Physical And Chemical Effect Of Membrane Disruption And Protein Inhibiting Treatments On E. Coli, Khadijah Wright

Honors Undergraduate Theses

The increase in antibacterial resistance has placed the issue of microbial multi-drug resistance on a global stage (Gurunathan, 2019). This issue poses a threat to human and animal health as well as to the environment (Aslam et al., 2018). It affects not only the efficacy of treatment but also how those treatments are conducted (Friedman, Temkin, & Carmeli, 2016). As a result of this ongoing threat, new treatments that have potent effects on bacteria are necessary. One scientific response to this issue has been the development of multifunctional nanoparticles (NPs)(H. Wang et al., 2018). NPs have the ability to be …


Clpxp-Regulated Proteins Suppress Requirement For Reca In Dam Mutants Of Escherichia Coli K-12, Amie Savakis Oct 2018

Clpxp-Regulated Proteins Suppress Requirement For Reca In Dam Mutants Of Escherichia Coli K-12, Amie Savakis

Masters Theses

Double strand breaks (DSB) are a common source of DNA damage in both prokaryotes and eukaryotes. If they are not repaired or are repaired incorrectly, they can lead to cell death (bacteria) or cancer (humans). In Escherichia coli, repair of DSB are typically accomplished via homologous recombination and mediated by RecA. This repair pathway, among others, is associated with activation of the SOS response. DNA adenine methyltransferase (dam) mutants have an increased number of DSB and, therefore, are notorious for being RecA-dependent for viability. Here, we show that the synthetic lethality of Δdam/ΔrecA is suppressed when clpP is removed, suggesting …


Inhibition Of Bacterial Growth And Prevention Of Bacterial Adhesion With Localized Nitric Oxide Delivery, Julia Osborne Jan 2016

Inhibition Of Bacterial Growth And Prevention Of Bacterial Adhesion With Localized Nitric Oxide Delivery, Julia Osborne

Dissertations, Master's Theses and Master's Reports

Bacterial infections continue to be a problem at the site of an indwelling medical device, and over the years, various bacterial strains have become more resistant to current antibiotic treatments. Bacterial infection at an indwelling medical device can be dangerous and affect the performance of the medical device which can ultimately lead to the failure of the device due to bacterial resistance to treatment.

Nitric Oxide (NO) has been shown to possess antibacterial properties to prevent and inhibit bacterial growth. NO releasing coatings on indwelling medical devices could provide a reduction in bacterial infections that occur at the device site …