Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Organisms

Iiv-6 Inhibits Nf-Kappab Responses In Drosophila, Cara C. West, Florentina Rus, Ying Chen, Anni Kleino, Monique Gangloff, Don B. Gammon, Neal S. Silverman Jul 2019

Iiv-6 Inhibits Nf-Kappab Responses In Drosophila, Cara C. West, Florentina Rus, Ying Chen, Anni Kleino, Monique Gangloff, Don B. Gammon, Neal S. Silverman

Neal Silverman

The host immune response and virus-encoded immune evasion proteins pose constant, mutual selective pressure on each other. Virally encoded immune evasion proteins also indicate which host pathways must be inhibited to allow for viral replication. Here, we show that IIV-6 is capable of inhibiting the two Drosophila NF-kappaB signaling pathways, Imd and Toll. Antimicrobial peptide (AMP) gene induction downstream of either pathway is suppressed when cells infected with IIV-6 are also stimulated with Toll or Imd ligands. We find that cleavage of both Imd and Relish, as well as Relish nuclear translocation, three key points in Imd signal transduction, occur …


Control Of Antiviral Innate Immune Response By Protein Geranylgeranylation, Shigao Yang, Zhaozhao Jiang, Katherine A. Fitzgerald, Donghai Wang Jul 2019

Control Of Antiviral Innate Immune Response By Protein Geranylgeranylation, Shigao Yang, Zhaozhao Jiang, Katherine A. Fitzgerald, Donghai Wang

Katherine A. Fitzgerald

The mitochondrial antiviral signaling protein (MAVS) orchestrates host antiviral innate immune response to RNA virus infection. However, how MAVS signaling is controlled to eradicate virus while preventing self-destructive inflammation remains obscure. Here, we show that protein geranylgeranylation, a posttranslational lipid modification of proteins, limits MAVS-mediated immune signaling by targeting Rho family small guanosine triphosphatase Rac1 into the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) at the mitochondria-ER junction. Protein geranylgeranylation and subsequent palmitoylation promote Rac1 translocation into MAMs upon viral infection. MAM-localized Rac1 limits MAVS' interaction with E3 ligase Trim31 and hence inhibits MAVS ubiquitination, aggregation, and activation. Rac1 also facilitates …


A Single Vertebrate Dna Virus Protein Disarms Invertebrate Immunity To Rna Virus Infection, Don B. Gammon, Sophie Duraffour, Daniel K. Rozelle, Heidi Hehnly, Rita Sharma, Michael E. Sparks, Cara C. West, Ying Chen, James J. Moresco, Graciela Andrei, John H. Connor, Darryl Conte Jr., Dawn E. Gundersen-Rindal, William L. Marshall, John R. Yates, Neal S. Silverman, Craig C. Mello Dec 2014

A Single Vertebrate Dna Virus Protein Disarms Invertebrate Immunity To Rna Virus Infection, Don B. Gammon, Sophie Duraffour, Daniel K. Rozelle, Heidi Hehnly, Rita Sharma, Michael E. Sparks, Cara C. West, Ying Chen, James J. Moresco, Graciela Andrei, John H. Connor, Darryl Conte Jr., Dawn E. Gundersen-Rindal, William L. Marshall, John R. Yates, Neal S. Silverman, Craig C. Mello

Neal Silverman

Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Factor-kappaB, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction. We show that A51R is also critical for VACV replication in vertebrate cells …


Bacterial Rna:Dna Hybrids Are Activators Of The Nlrp3 Inflammasome, Sivapriya Kailasan Vanaja, Vijay A. K. Rathinam, Maninjay K. Atianand, Parisa Kalantari, Brian M. Skehan, Katherine A. Fitzgerald, John M. Leong Dec 2014

Bacterial Rna:Dna Hybrids Are Activators Of The Nlrp3 Inflammasome, Sivapriya Kailasan Vanaja, Vijay A. K. Rathinam, Maninjay K. Atianand, Parisa Kalantari, Brian M. Skehan, Katherine A. Fitzgerald, John M. Leong

Katherine A. Fitzgerald

Enterohemorrhagic Escherichia coli (EHEC) is an extracellular pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. The proinflammatory cytokine, interleukin-1beta, has been linked to hemolytic uremic syndrome. Here we identify the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome as an essential mediator of EHEC-induced IL-1beta. Whereas EHEC-specific virulence factors were dispensable for NLRP3 activation, bacterial nucleic acids such as RNA:DNA hybrids and RNA gained cytosolic access and mediated inflammasome-dependent responses. Consistent with a direct role for RNA:DNA hybrids in inflammasome activation, delivery of synthetic EHEC RNA:DNA hybrids into the cytosol triggered NLRP3-dependent responses, …


Malaria-Induced Nlrp12/Nlrp3-Dependent Caspase-1 Activation Mediates Inflammation And Hypersensitivity To Bacterial Superinfection, Marco A. Ataide, Warrison A. Andrade, Dario S. Zamboni, Donghai Wang, Maria Do Carmo Souza, Bernardo S. Franklin, Samir Elian, Flaviano S. Martins, Dhelio Pereira, George W. Reed, Katherine A. Fitzgerald, Douglas T. Golenbock, Ricardo T. Gazzinelli Dec 2014

Malaria-Induced Nlrp12/Nlrp3-Dependent Caspase-1 Activation Mediates Inflammation And Hypersensitivity To Bacterial Superinfection, Marco A. Ataide, Warrison A. Andrade, Dario S. Zamboni, Donghai Wang, Maria Do Carmo Souza, Bernardo S. Franklin, Samir Elian, Flaviano S. Martins, Dhelio Pereira, George W. Reed, Katherine A. Fitzgerald, Douglas T. Golenbock, Ricardo T. Gazzinelli

Katherine A. Fitzgerald

Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1beta. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-gamma-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1beta expression required a second stimulation with LPS and was also dependent on IFN-gamma-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1beta upon a second …