Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Organisms

Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle Apr 2023

Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle

Graduate School of Biomedical Sciences Theses and Dissertations

For normal cellular function, exogenous signals must be interpreted and careful coordination must take place to ensure desired fates are achieved. Mitochondria are key regulatory nodes of cellular fate, undergoing fission/fusion cycles depending on the needs of the cell, and help mediate cell death fates. The CKM or Cdk8 kinase module, is composed of cyclin C (CC), Cdk8, Med12/12L, and Med13/13L. The CKM controls RNA polymerase II, acting as a regulator of stress-response and growth-control genes. Following stress, CC translocates to the mitochondria and interacts with both fission and iRCD apoptotic mediators. We hypothesize that CC represents a key mediator, …


Snf1 Cooperates With The Cwi Mapk Pathway To Mediate The Degradation Of Med13 Following Oxidative Stress, Stephen D Willis, David C Stieg, Kai Li Ong, Ravina Shah, Alexandra K. Strich, Julianne H Grose, Katrina F Cooper Jun 2018

Snf1 Cooperates With The Cwi Mapk Pathway To Mediate The Degradation Of Med13 Following Oxidative Stress, Stephen D Willis, David C Stieg, Kai Li Ong, Ravina Shah, Alexandra K. Strich, Julianne H Grose, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Eukaryotic cells, when faced with unfavorable environmental conditions, mount either pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core Mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 degradation dependent on the cell wall integrity pathway, MAPK Slt2. Here we show that the AMP kinase Snf1 activates a second …


Snf1 Dependent Destruction Of Med13 Is Required For Programmed Cell Death Following Oxidative Stress In Yeast, Stephen D Willis, David C Stieg, R. Shah, Randy Strich, Katrina F Cooper Dec 2017

Snf1 Dependent Destruction Of Med13 Is Required For Programmed Cell Death Following Oxidative Stress In Yeast, Stephen D Willis, David C Stieg, R. Shah, Randy Strich, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

All eukaryotic cells, when faced with unfavorable environmental conditions, have to decide whether to mount a survival or cell death response. The conserved cyclin C and its kinase partner Cdk8 play a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core mediator complex of RNA polymerase II. In S. cerevisiae, oxidative stress triggers Med13 destruction1, which thereafter releases cyclin Ci nto the cytoplasm. Cytoplasmic cyclin C associates with mitochondria where it induces hyper-fragmentation and programmed cell death2. This suggests a model in …


The Role Of Mapk And Scf In The Destruction Of Med13 In Cyclin C Mediated Cell Death, David C Stieg, Stephen D Willis, Joseph Scuorzo, Mia Song, Vidyaramanan Ganesan, Randy Strich, Katrina F Cooper Dec 2017

The Role Of Mapk And Scf In The Destruction Of Med13 In Cyclin C Mediated Cell Death, David C Stieg, Stephen D Willis, Joseph Scuorzo, Mia Song, Vidyaramanan Ganesan, Randy Strich, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

In response to stress, the yeast1 and mammalian2 cyclin C translocate from the nucleus to the cytoplasm, where it associates with the GTPase Drp1/Dnm1 to drive mitochondrial fragmentation and apoptosis. Therefore, the decision to release cyclin C represents a key life or death decision. In unstressed cells, the cyclin C‐Cdk8 kinase regulates transcription by associating with the Mediator of RNA polymerase II. We previously reported that the Mediator component Med13 anchors cyclin C in the nucleus3. Loss of Med13 function leads to constitutive cytoplasmic localization of cyclin C, resulting in fragmented mitochondria, hypersensitivity to stress and …


Translocation Of Cyclin C During Oxidative Stress Is Regulated By Interactions With Multiple Trafficking Proteins, Daniel G J Smethurst, Katrina F Cooper, Randy Strich Dec 2017

Translocation Of Cyclin C During Oxidative Stress Is Regulated By Interactions With Multiple Trafficking Proteins, Daniel G J Smethurst, Katrina F Cooper, Randy Strich

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Eukaryotic cells take cues from their environment and interpret them to enact a response. External stresses can produce a decision between adjusting to behaviors which promote surviving the stress, or enacting a cell death program. The decision to undergo programmed cell death (PCD) is controlled by a complex interaction between nuclear and mitochondrial signals. The mitochondria are highly dynamic organelles that constantly undergo fission and fusion. However, a dramatic shift in mitochondrial morphology toward fission occurs early in the PCD process. We have identified the transcription factor cyclin C as the biochemical trigger for stress‐induced mitochondrial hyper‐fragmentation in yeast (Cooper …