Open Access. Powered by Scholars. Published by Universities.®

Organisms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Organisms

Novel Mammalian Models For Understanding And Treating Spinal Cord Injury, Michael B. Orr Jan 2021

Novel Mammalian Models For Understanding And Treating Spinal Cord Injury, Michael B. Orr

Theses and Dissertations--Physiology

Spinal cord injury (SCI) is devastating and often leaves the injured individual with persistent dysfunction. The injury persists because humans have poor wound repair and there are no pharmacologic treatments to induce wound repair after SCI. The continued efforts to discover therapeutic targets and develop treatments heavily relies on animal models. The purpose of this project is to develop and study novel mammalian models of SCI to provide insights for the development and effective implementation of SCI therapies.

Lab mice (Mus musculus) are a powerful tool for recapitulating the progression and persistent damage evident in human SCI, but …


An Approach For The In-Vivo Characterization Of Brain And Heart Inflammation In Duchenne Muscular Dystrophy, Joanne Tang Sep 2020

An Approach For The In-Vivo Characterization Of Brain And Heart Inflammation In Duchenne Muscular Dystrophy, Joanne Tang

Electronic Thesis and Dissertation Repository

Duchenne muscular dystrophy (DMD) is a neuromuscular disorder caused by dystrophin loss—notably within muscles and CNS neurons. DMD presents as cognitive weakness, progressive skeletal and cardiac muscle degeneration until pre-mature death from cardiac or respiratory failure. Innovative therapies improved life expectancy, but this is accompanied by increased late-onset heart failure and emergent cognitive degeneration. Thus, there is an increasing need to both better understand and track disease pathophysiology in the dystrophic heart and brain prior to onset of severe degenerative symptoms. Chronic inflammation is strongly associated with skeletal and cardiac muscle degeneration, however chronic neuroinflammation’s role is largely unknown in …


The Effect Of Hypoxia On Brain Cell Proliferation In Weakly Electric Fish, Petrocephalus Degeni, Kaitlin Klovdahl Apr 2020

The Effect Of Hypoxia On Brain Cell Proliferation In Weakly Electric Fish, Petrocephalus Degeni, Kaitlin Klovdahl

Senior Theses and Projects

Oxygen levels tend to remain at a steady state concentration in the Earth’s atmosphere, yet in some bodies of water, they can fluctuate and decrease drastically. Many organisms that inhabit the swamps, lakes, streams, and parts of the ocean where this occurs have evolved adaptations to manage this environmental uncertainty and continue normal oxygen consumption. The Lwamunda swamp in Uganda is chronically hypoxic, yet it is home to many species, including the electric fish Petrocephalus degeni. P. degeni are unusual by nature of their immense brain, and the Lwamunda swamp appears ill-suited for maintaining this large, metabolically active organ. To …


Neuroanatomy Of The Blackspotted Rockskipper, Entomacrodus Striatus, Pooja Dayal Jan 2020

Neuroanatomy Of The Blackspotted Rockskipper, Entomacrodus Striatus, Pooja Dayal

Williams Honors College, Honors Research Projects

Here I characterized the central neuroanatomy of the Blackspotted Rockskipper, Entomacrodus striatus, native to French Polynesia. The neuroanatomy of E. striatus has not been studied prior to this paper. I used several histology and antibody staining techniques to accomplish this, including Crystal Violet, immunohistochemistry, immunofluorescence, and Bielschowsky’s Silver Nitrate staining. This paper describes the most successful techniques used, identifies major structures in the species’ neuroanatomy, and also explains why studying E. striatus is important in the future of vertebrate research.


Programming Heart Disease: Does Poor Maternal Nutrition Alter Expression Of Cardiac Markers Of Proliferation, Hypertrophy, And Fibrosis In Offspring?, Cathy Chun May 2016

Programming Heart Disease: Does Poor Maternal Nutrition Alter Expression Of Cardiac Markers Of Proliferation, Hypertrophy, And Fibrosis In Offspring?, Cathy Chun

Honors Scholar Theses

Maternal malnutrition can affect fetal organogenesis, metabolic processes, and factors involved in developmental regulation. Of the many physiological effects poor maternal nutrition can induce in offspring, one of the most important organs affected is the heart. Cardiovascular disease has been associated with poor maternal diet. It also been suggested that hypertension can originate during impaired intrauterine growth and development. Hypertension can trigger hypertensive heart disease and is associated with numerous heart complications. We hypothesized that poor maternal nutrition would alter critical growth factors associated with normal heart development, specifically, insulin-like growth factor (IGF)-1, IGF-2, transforming growth factor (TGF)β, and connective …


Cellular Responses In Escherichia Coli To Lethal And Sublethal Doses Of Ozone, Indira Ruth Komanapalli Jun 1997

Cellular Responses In Escherichia Coli To Lethal And Sublethal Doses Of Ozone, Indira Ruth Komanapalli

Loma Linda University Electronic Theses, Dissertations & Projects

Ozone is a major component of photochemical smog. High levels of this pollutant, sufficient to affect human health are found in many urban areas worldwide. Though limited studies in humans are supported by extensive findings from animal experiments, a difficulty in interpreting the results of these experiments has lead to an ambiguity on the biochemical mechanism of ozone toxicity. To elucidate the mechanism by which ozone causes cell damage and eventual cell death we conducted a comprehensive study using Escherichia coli K-12 as a model.

Studies on the comparative inactivation of bacteriophage lambda (λ), Escherichia coli, and Candida albicans …