Open Access. Powered by Scholars. Published by Universities.®

Oncology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Oncology

Applying Mci-062, A Novel Pan-Ras Inhibitor, To Treat Kras-Mutant Lung Cancer, Richard Fu May 2022

Applying Mci-062, A Novel Pan-Ras Inhibitor, To Treat Kras-Mutant Lung Cancer, Richard Fu

Honors Theses

RAS is a prevalent oncogene that is mutated in 27% of human cancers. Gain-of-function RAS mutations activate multiple downstream pathways, including the RAS-RAF-MEK-ERK and PI3K/AKT/mTOR pathways, which are critical in tumorigenesis and cancer cell proliferation. RAS proteins such as KRAS, a member of the RAS protein family, and their downstream effectors are attractive targets for cancer therapy since their mutations act as frequent drivers in lung, colorectal, and pancreatic cancers. However, RAS proteins have relatively smooth surfaces that lack traditional binding pockets, making inhibitors specific to RAS difficult to create. Recently, a novel small molecule pan-RAS inhibitor named MCI-062 was …


Novel Peptide Biomaterials For Enhanced Delivery Of Sirna Cargo For Treatment Of Ovarian Cancer, Timothy Samec Dec 2021

Novel Peptide Biomaterials For Enhanced Delivery Of Sirna Cargo For Treatment Of Ovarian Cancer, Timothy Samec

All Dissertations

Ovarian cancer is the 7th leading cause of cancer related death and the 5th most commonly diagnosed cancer among women. Primarily diagnosed in stage III or stage IV, aggressive treatment is necessary and involves surgical debulking and administration of systemic chemotherapeutics. Unfortunately, these strategies fall short in effectively treating ovarian cancer and many patients experience local disease recurrence, development of multidrug resistant tumors, regional or distant metastatic events, or a combination of the three. As such, there is a significant need for additional treatment options and methods of delivery to improve therapeutic efficacy and disease survivability.

RNA interference …


Characterization Of Cucurbitacin-Inspired Estrone Analogues As Novel Inhibitors Of Human Atp- Binding Cassette Proteins (Abcb1 And Abcc1), Jennifer Kyeremateng Jan 2021

Characterization Of Cucurbitacin-Inspired Estrone Analogues As Novel Inhibitors Of Human Atp- Binding Cassette Proteins (Abcb1 And Abcc1), Jennifer Kyeremateng

Electronic Theses and Dissertations

ATP-binding cassette (ABC) transporters are a large class of integral membrane proteins that contribute to key physiological functions in all organisms by utilizing ATP binding and hydrolysis to transport diverse substrates across membrane barriers. P-glycoprotein (P-gp/ ABCB1) and Multidrug Resistance protein 1 (MRP1/ABCC1) are widely reported ABC transporters associated with multidrug resistance in cancer. Multidrug resistance (MDR) mediated by P-gp and MRP1 is responsible for treatment failures of many metastatic cancers as a result of reduced accumulation, bioavailability and diminished potency of anticancer drugs. Currently, known P-gp and MRP1 inhibitors are limited due to toxicity, lack of selectivity and low …


Generation Of An Oncolytic Adenovirus Targeting The Cxcr4 And Cxcr7 Chemokine Receptors In Breast Cancer, Samia Melissa O'Bryan Aug 2019

Generation Of An Oncolytic Adenovirus Targeting The Cxcr4 And Cxcr7 Chemokine Receptors In Breast Cancer, Samia Melissa O'Bryan

LSU Doctoral Dissertations

Breast cancer is the most diagnosed cancer in women under 60 and the second most diagnosed cancer in women over 60. While treatments for localized breast cancer are quite successful with high survival rates at 99%, advanced breast cancer remains hard to treat with a nearly 75% decrease in survival. Current treatments are inefficient at treating advanced stages of breast cancer, and thus, new therapies are sorely needed to address the complexity of advanced stage breast cancer. The ideal therapy would be capable of systemic administration, targets cancer cells and spares normal tissue. Oncolytic adenovirus is an ideal therapeutic vector …


Oncolytic Virus Therapy For The Treatment Of Metastatic Ovarian Cancer, Jessica Tong Apr 2016

Oncolytic Virus Therapy For The Treatment Of Metastatic Ovarian Cancer, Jessica Tong

Electronic Thesis and Dissertation Repository

The management of patients with epithelial ovarian cancer (EOC) faces two major challenges which standard treatments fail to effectively address: 1) Diffuse metastasis as a consequence of late stage diagnosis and 2) intra-tumoral heterogeneity, which fuels tumor evolution and drives the acquisition of chemotherapeutic resistance. In this thesis, we tested new therapeutic strategies using a 3-dimensional in vitro spheroid culture model that mimics key steps of epithelial ovarian cancer metastasis; and another model that mimics both temporal and cellular heterogeneity by establishing multiple cell lines from a single patient over the course of disease progression. Using these models, we investigated …


Understanding And Targeting The C-Terminal Binding Protein (Ctbp) Substrate-Binding Domain For Cancer Therapeutic Development, Benjamin L. Morris Jan 2016

Understanding And Targeting The C-Terminal Binding Protein (Ctbp) Substrate-Binding Domain For Cancer Therapeutic Development, Benjamin L. Morris

Theses and Dissertations

Cancer involves the dysregulated proliferation and growth of cells throughout the body. C-terminal binding proteins (CtBP) 1 and 2 are transcriptional co-regulators upregulated in several cancers, including breast, colorectal, and ovarian tumors. CtBPs drive oncogenic properties, including migration, invasion, proliferation, and survival, in part through repression of tumor suppressor genes. CtBPs encode an intrinsic dehydrogenase activity, utilizing intracellular NADH concentrations and the substrate 4-methylthio-2-oxobutyric acid (MTOB), to regulate the recruitment of transcriptional regulatory complexes. High levels of MTOB inhibit CtBP dehydrogenase function and induce cytotoxicity among cancer cells in a CtBP-dependent manner. While encouraging, a good therapeutic would utilize >100-fold …


In Vivo Murine Melanoma Tumor Responses To Nanosecond Pulsed Electric Field Treatment, Xinhua Chen Jul 2008

In Vivo Murine Melanoma Tumor Responses To Nanosecond Pulsed Electric Field Treatment, Xinhua Chen

Theses and Dissertations in Biomedical Sciences

High intensity nanosecond pulsed electric fields (nsPEF) were applied to melanoma tumors to observe functional and structural biological changes and to investigate the possible molecular mechanisms responsible. An animal model was set up by injecting B16F10 mouse melanoma cells into SKH-1 mice. A treatment (Tx) of 100 pulses: 300 nanosecond duration; 40 kV/cm field strength; at 0.5 Hz rate were delivered to melanoma tumors in 120 mice. The nsPEF Txcaused tumor self-destruction with sharply decreased cell volumes and shrunken nuclei. The apoptotic biochemical tests confirmed nsPEF Tx induced apoptosis in a time-dependent manner. Examination of gross vessel and micro-vessel density …