Open Access. Powered by Scholars. Published by Universities.®

Medical Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Sciences

Escherichia Coli Itat Is A Type Ii Toxin That Inhibits Translation By Acetylating Isoleucyl-Trnaile, Brendan Wilcox, Ilya Osterman, Marina Serebryakova, Dmitry Lukyanov, Ekaterina Komarova, Bridget Gollan, Natalia Morozova, Yuri I Wolf, Kira S Makarova, Sophie Helaine, Petr Sergiev, Svetlana Dubiley, Sergei Borukhov, Konstantin Severinov Sep 2018

Escherichia Coli Itat Is A Type Ii Toxin That Inhibits Translation By Acetylating Isoleucyl-Trnaile, Brendan Wilcox, Ilya Osterman, Marina Serebryakova, Dmitry Lukyanov, Ekaterina Komarova, Bridget Gollan, Natalia Morozova, Yuri I Wolf, Kira S Makarova, Sophie Helaine, Petr Sergiev, Svetlana Dubiley, Sergei Borukhov, Konstantin Severinov

Rowan-Virtua School of Osteopathic Medicine Departmental Research

Prokaryotic toxin-antitoxin (TA) modules are highly abundant and are involved in stress response and drug tolerance. The most common type II TA modules consist of two interacting proteins. The type II toxins are diverse enzymes targeting various essential intracellular targets. The antitoxin binds to cognate toxin and inhibits its function. Recently, TA modules whose toxins are GNAT-family acetyltransferases were described. For two such systems, the target of acetylation was shown to be aminoacyl-tRNA: the TacT toxin targets aminoacylated elongator tRNAs, while AtaT targets the amino acid moiety of initiating tRNAMet. We show that the itaRT gene pair from Escherichia coli …


Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin Aug 2018

Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin

Graduate School of Biomedical Sciences Theses and Dissertations

In order to maintain the ability to generate proteins, proliferating cells must continuously generate ribosomes, designating up to 80% of their energy to ribosome biogenesis (RBG). RBG involves transcription of rDNA by RNA polymerases I (Pol I) and III (Pol III), expression of approximately 80 ribosomal proteins, and assembly of these components in a process referred to as ribosome maturation. During maturation, the Pol I transcribed 47S pre-rRNA undergoes a number of processing events, while simultaneously interacting with processing factors and ribosomal proteins that drive pre-ribosome assembly. Inhibition of RBG has become one of the pursued targets for cancer therapy …