Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Medicine and Health Sciences

Investigation Of Folate-Poly(Glutamic Acid)/Polyethylenimine/Dna Complexes For In Vitro Gene Delivery, Caleb Akers Jan 2023

Investigation Of Folate-Poly(Glutamic Acid)/Polyethylenimine/Dna Complexes For In Vitro Gene Delivery, Caleb Akers

Theses and Dissertations--Pharmacy

Gene therapy is currently being studied as a treatment for a variety of indications, including cancer, infectious disease, and cardiovascular diseases, among others. While many of the early treatments in the field involved the use of viral delivery methods, various safety, ethical, and financial concerns limit the potential uses of this methodology. As such, more recent research has focused on developing non-viral delivery platforms to alleviate some of the issues inherent in viral delivery. Recently, the release of the COVID-19 vaccines from Pfizer and Moderna represents a promising use of non-viral delivery as both utilized a lipid-based delivery vector.

Despite …


Development Of Biomaterials For Drug Delivery, Raquel De Castro May 2021

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


Ligand-Installed Polymeric Nanocarriers For Combination Chemotherapy, Xinyuan Xi Aug 2020

Ligand-Installed Polymeric Nanocarriers For Combination Chemotherapy, Xinyuan Xi

Theses & Dissertations

Combination chemotherapy remains the mainstay of cancer treatment because such strategy targets different cell signaling pathways to decrease the likelihood of developing protective mechanisms by cancer cells, thereby delaying the onset of recurrence and prolonging the survival. The co-delivery of binary drug combination via a single nanocarrier provides benefits in reducing dose-limiting toxicities, improving the pharmacokinetic properties of the cargo, spatial-temporal synchronization of drug exposure, and synergistic therapeutic effects. Rational design of such regimen is crucial for maximizing the therapeutic effects since only certain drug ratios exposed to the target might be synergistic while other ratios exert additive or even …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin Jan 2020

Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin

Doctoral Dissertations

“The current treatment methods in cancer are associated with toxicity in healthy tissues, partial therapeutic response, drug resistance and finally recurrence of the disease. The cancer drugs are challenged by non-specific binding, undesired toxicity in healthy cells, low therapeutic index and finally poor therapeutic outcome. In this work, a targeted nanoscale therapeutic system Antibody Drug Nanoparticle (ADN) was engineered to selectively inhibit the breast cancer cell growth with reduced toxicity in healthy cells. The ADNs were designed by synthesizing rod shaped anoparticles using pure chemotherapeutic drug and covalently conjugating a therapeutic monoclonal antibody (mAb) on the surface of the drug …


Synthesis Of New Aliphatic Pseudo-Branched Polyester Co-Polymers For Biomedical Applications, Zachary Shaw Jul 2019

Synthesis Of New Aliphatic Pseudo-Branched Polyester Co-Polymers For Biomedical Applications, Zachary Shaw

Electronic Theses & Dissertations

In this study, a hyperbranched polyester co-polymer was designed using a proprietary monomer and diethylene glycol or triethylene glycol as monomers. The synthesis was carried out using standard melt polymerization technique and catalyzed by p-Tolulenesulfonic acid. The progress of the reaction was monitored with respect to time and negative pressure, with samples being subjected to standard characterization protocols. The resulting polymers were purified using the solvent precipitation method and characterized using various chromatographic and spectroscopic methods including GPC, MALDI-TOF, and NMR. We have observed polymers with a molecular weight of 29,643 kDa and 33,996 kDa, which is ideal to be …


A Cancer-Targeted Gold Nanoparticle-Based Mri Contrast Agent., Nagwa El-Baz Aug 2018

A Cancer-Targeted Gold Nanoparticle-Based Mri Contrast Agent., Nagwa El-Baz

Electronic Theses and Dissertations

In oncology, imaging plays a major role in terms of early detection and treatment of most types of cancer. Magnetic resonance imaging (MRI) is mostly used for cancer diagnosis due to its excellent contrast resolution. However, MRI for cancer diagnosis is somewhat limited by its sensitivity. In this thesis, we assessed the ability of theranostic platform consisting of gold nanoparticles functionalized with a cancer targeting aptamer; AS1411 and gadolinium chelate (Dotarem thiol derivative; Gd (III)-DO3A) as a MRI contrast agent to target malignant tumors by enhancing the MRI contrast of the detected tumor. The proposed technology is a novel injectable …


Evaluation Of Drug-Loaded Gold Nanoparticle Cytotoxicity As A Function Of Tumor Tissue Heterogeneity., Hunter Allan Miller Aug 2018

Evaluation Of Drug-Loaded Gold Nanoparticle Cytotoxicity As A Function Of Tumor Tissue Heterogeneity., Hunter Allan Miller

Electronic Theses and Dissertations

The inherent heterogeneity of tumor tissue presents a major challenge to nanoparticle-medicated drug delivery. This heterogeneity spans from the molecular to the cellular (cell types) and to the tissue (vasculature, extra-cellular matrix) scales. Here we employ computational modeling to evaluate therapeutic response as a function of vascular-induced tumor tissue heterogeneity. Using data with three-layered gold nanoparticles loaded with cisplatin, nanotherapy is simulated with different levels of tissue heterogeneity, and the treatment response is measured in terms of tumor regression. The results show that tumor vascular density non-trivially influences the nanoparticle uptake and washout, and the associated tissue response. The drug …


Mathematical Modeling Of Nanoparticle Biodistribution, Prashant Dogra Jan 2018

Mathematical Modeling Of Nanoparticle Biodistribution, Prashant Dogra

Biomedical Sciences ETDs

The prospects of nanoparticle-based drug delivery and imaging have been hindered by insufficient understanding of the effects of nanoparticle physicochemical properties on their in vivo disposition. Here, we present an integrative mathematical modeling and in vivo imaging approach to quantify the relationship between nanoparticle physicochemical properties, namely, size, surface charge, and surface chemistry, on their in vivo disposition kinetics in healthy rats. We developed simple master equations in closed-form to accurately represent the time-dependent concentration of nanoparticles in different regions of the body and obtain functional relationships for predictive purpose to support rational design of nanomedicine. We further used …


One-Pot Syntheses And Characterizations Of “Click-Able” Polyester Polymers For Potential Biomedical Applications, James F. Beach Ii May 2017

One-Pot Syntheses And Characterizations Of “Click-Able” Polyester Polymers For Potential Biomedical Applications, James F. Beach Ii

Electronic Theses & Dissertations

In this study, a synthetic polyester polymer was designed using polyethylene glycol, sorbitol, glutaric acid and 4-pentynoic acid as monomers. The synthesis was carried out using standard melt polymerization technique and catalyzed by Novozyme-435, an enzyme suitable for polyesterification of biocompatible compounds. The progress of the reaction was monitored with respect to time and vacuum exposure, with samples being subjected to standard characterization protocols. Polymers with high molecular weight and water solubility were chosen for further modification into folate-functionalized polymeric nanoparticles for targeted drug delivery to cancer cells. This was achieved by employing a solvent diffusion method, wherein the polymer …


The Effect Of K562-Il21-2 Plasma Membrane Particles On The Proliferation Of Natural Killer Cells To Fight Cancer, Michelle Prophete Jan 2017

The Effect Of K562-Il21-2 Plasma Membrane Particles On The Proliferation Of Natural Killer Cells To Fight Cancer, Michelle Prophete

Honors Undergraduate Theses

Immunotherapy has emerged as a current and future paradigm of cancer treatment, which utilizes the body’s immune system to eradicate cancer. Natural Killer (NK) cells as part of the innate immune system have immense potential in their anti-tumor cytotoxic activities and host cell surveillance properties. NK cells comprise approximately five to fifteen percent of peripheral blood lymphocytes and can be proliferated in vitro using recently developed methods with co-cultures with feeder cells (derived from engineered tumor cells) or plasma membrane (PM) particles, produced from the fore mentioned feeder cells, in combination with soluble cytokines. For efficient growth and maintenance of …


Elucidating The Effects Of Metabolic State On Nanoparticle Distribution In Mice And In Vitro Uptake, Kevin James Quigley Dec 2016

Elucidating The Effects Of Metabolic State On Nanoparticle Distribution In Mice And In Vitro Uptake, Kevin James Quigley

Doctoral Dissertations

Since almost 70% of the U.S. population over 20 years old is overweight and 30% is obese, with much of the western world following suit, many patients that will potentially be administered circulating nanoparticles designed to localize to tumors and avoid non-target areas will have significant amounts of white adipose tissue (WAT), enlarged livers, and additional metabolic complications such as type 2 diabetes. However, studies on nanoparticle biodistribution and efficacy take place almost without exception in lean rodents with healthy metabolic states. In this work, I determined the biodistribution of model nanoparticles – neutral filomicelles and polystyrene spheres both carrying …


Alternative Methods For The Treatment Of Chemo-Resistant Cancers, Kaitlyn Wong Jul 2016

Alternative Methods For The Treatment Of Chemo-Resistant Cancers, Kaitlyn Wong

Doctoral Dissertations

Great strides have been made in cancer therapy in the past century, yet it remains one of the leading causes of death in the United States today. This work aimed to shed light on novel methods to treat a variety of aggressive and often chemo-resistant cancers both in vitro and in vivo. The first aim of this work was to evaluate the therapeutic efficacy of poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) prodrugs compared to standard chemotherapeutic agents. Conjugation of polyMPC to drugs such as doxorubicin (Dox) can result in its improved solubility, prolonged half-life and therapeutic efficacy. PolyMPC and polyMPC-Dox (at a …


Synthesis And Characterization Of Nanoparticle-Coupled Proteins In Human Serum Albumin, Kyle M. Mahoney Apr 2016

Synthesis And Characterization Of Nanoparticle-Coupled Proteins In Human Serum Albumin, Kyle M. Mahoney

Honors College Theses

Recently, cancer has become an ever-growing issue and has led to many researchers attempt to unravel the mystery of the disease. This research has led to a promising field of treatment: nanotechnology-coupled pharmaceuticals. Nanoparticles act as a whole unit when in conjugation with other molecules and add to the carrier molecule, most often proteins, benefits the nanoparticles themselves possess. One such carrier protein that can be conjugated with nanoparticles is Human Serum Albumin (HSA). Albumin is of interest in cancer research for two reasons: it is native to the human vasculature so it does not elicit immunological reactions, and it …


Biodegradable Hybrid Nanogels For Combination Chemotherapy, Swapnil Desale Dec 2015

Biodegradable Hybrid Nanogels For Combination Chemotherapy, Swapnil Desale

Theses & Dissertations

Combination chemotherapy is commonly used to treat cancer, because such a therapy regimens usually involve sequential administration of multiple drugs and allow targeting different cell signaling pathway. The co-delivery of drug combination at a controlled ratio via the same vehicle is offering the advantages such as spatial-temporal synchronization of drug exposure, synergistic therapeutic effects and suppression of drug resistance. Undoubtedly, there are several molecular and pharmacological factors that determine the effectiveness of drug combinations. A rationally designed drug combination is required since certain drug ratios and the definitive exposure to the targets of interest can only be synergistic while others …


Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii Jan 2015

Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in …