Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Medicine and Health Sciences

An In Vivo Biocompatibility Analysis Of A Novel Tissue Regeneration Matrix Using A Pig Model, Shamar Thomas May 2023

An In Vivo Biocompatibility Analysis Of A Novel Tissue Regeneration Matrix Using A Pig Model, Shamar Thomas

All Theses

The goal of this project is to develop an injectable bead scaffold to promote tissue regeneration in the void created by lumpectomy and to alleviate post lumpectomy problems by preventing local recurrence and minimizing surgical-related infections. Microbeads were synthesized from collagen type I and crosslinked with tannic acid to form the basis for this injectable therapeutic. Tannic acid acts as a therapeutic anticancer agent. The action mechanisms of tannins in breast cancer cells have been studied with studies showing tannins to be cytotoxic to cancer cells in a dose-dependent manner. Tannic acid induces apoptosis in breast cancer cells via caspase …


Development Of A Computational Model To Investigate Pathways And The Effects Of Treatment In Fanconi Anemia, Sabrina Kellett May 2023

Development Of A Computational Model To Investigate Pathways And The Effects Of Treatment In Fanconi Anemia, Sabrina Kellett

Biological Sciences Undergraduate Honors Theses

Fanconi Anemia (FA) is a rare type of anemia that is not easily studied and can have very detrimental effects. This disease compromises the bone marrow, resulting in decreased hemopoiesis. Symptoms of FA also include abnormalities in the brain and spinal cord, incorrect formation of the kidneys, abnormal formation of the heart and lungs, and a dramatically increased risk of developing cancer. FA can be caused by various mutations in any of the 22 genes that encode for proteins involved in what is called the FA DNA repair pathway. In healthy individuals, this pathway specifically repairs interstrand cross-links (ICLs) recognized …


Cost-Benefit Analysis Of Increased Water Treatment Plant Service Goals On Reducing Water Quality Risk, Briton Polen, Kendra Sanner Jan 2023

Cost-Benefit Analysis Of Increased Water Treatment Plant Service Goals On Reducing Water Quality Risk, Briton Polen, Kendra Sanner

Williams Honors College, Honors Research Projects

To treat water to make it safe to drink, disinfection processes are used in water treatment plants. These disinfection processes produce disinfection byproducts (DBPs) through the reaction of organic matter and the disinfectant, such as chlorine. DBPs have been shown to pose a cancer risk to consumers. In this report, the focus is on two types of DBPs, trihalomethanes (THMs) and haloacetic acids (HAAs). The cancer risks associated with DBPs are analyzed through ingestion and inhalation pathways. Ingestion and inhalation consist of common water uses like drinking, cooking, or bathing. In addition to this, DBPs have been shown to increase …


The Investigations Of Nps Modulated Immunity And Immunometabolism, Brittney Leigh Ruedlinger Dec 2021

The Investigations Of Nps Modulated Immunity And Immunometabolism, Brittney Leigh Ruedlinger

Biomedical Sciences Theses & Dissertations

Cancers remain in the top noncommunicable diseases responsible for premature mortality. The heterogeneity among cancers and within tumors makes treating them ever more challenging. Our misfortune for developing cures is mocked by cancer, with the lowest probability of success (PoS) through clinical trials and FDA approval. At the basic level, there are generally two broad gaps impeding cancer eradication: the unidentified shared mechanism(s) exploited by all cancers and the therapeutic approach to intervene. Nanosecond pulse stimulation (NPS) offers a unique approach since its broad impacts intersect those often hijacked by oncogenesis. Metabolic pathways, known for dysfunctions among cancers, share a …


Development Of Biomaterials For Drug Delivery, Raquel De Castro May 2021

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin Jan 2020

Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin

Doctoral Dissertations

“The current treatment methods in cancer are associated with toxicity in healthy tissues, partial therapeutic response, drug resistance and finally recurrence of the disease. The cancer drugs are challenged by non-specific binding, undesired toxicity in healthy cells, low therapeutic index and finally poor therapeutic outcome. In this work, a targeted nanoscale therapeutic system Antibody Drug Nanoparticle (ADN) was engineered to selectively inhibit the breast cancer cell growth with reduced toxicity in healthy cells. The ADNs were designed by synthesizing rod shaped anoparticles using pure chemotherapeutic drug and covalently conjugating a therapeutic monoclonal antibody (mAb) on the surface of the drug …


Synthesis, Characterization, And Evaluation Of Metal Complexes With Cancer Selective Anti-Proliferative Effects And Hydrogen Evolution Catalytic Properties., Nicholas Vishnosky May 2019

Synthesis, Characterization, And Evaluation Of Metal Complexes With Cancer Selective Anti-Proliferative Effects And Hydrogen Evolution Catalytic Properties., Nicholas Vishnosky

Electronic Theses and Dissertations

Bis-thiosemicarbazones (BTSC) and their metal chelates have properties that are useful in several different scientific fields. These systems have already received attention in major fields of biology and engineering. Hydrogen evolution reaction (HER) catalysts need to be cheap and operate under minimal overpotentials with a long lifetime. The treatment of cancer requires, novel agents that have potent cytotoxic activity against cancer cells while displaying minimal side effects. In this dissertation the modular synthesis of these bis-thiosemicarbazone systems is utilized to regulate the redox chemistry for employment in the desired sector of chemistry. The ligand and metal chelates synthesized were characterized …


Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott Jan 2019

Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott

Theses and Dissertations--Chemical and Materials Engineering

Gene therapy is an approach for the treatment of acquired cancers, infectious disease, degenerative disease, and inherited genetic indications. Developments in the fields of immunotherapies and CRISPR/Cas9 genome editing are revitalizing the efforts to move gene therapy to the forefront of modern medicine. However, slow progress and poor clinical outcomes have plagued the field due to regulatory and safety concerns associated with the flagship delivery vector, the recombinant virus. Immunogenicity and poor transduction in certain cell types severely limits the utility of viruses as a delivery agent of nucleic acids. As a result, significant efforts are being made to develop …


Evaluation Of Drug-Loaded Gold Nanoparticle Cytotoxicity As A Function Of Tumor Tissue Heterogeneity., Hunter Allan Miller Aug 2018

Evaluation Of Drug-Loaded Gold Nanoparticle Cytotoxicity As A Function Of Tumor Tissue Heterogeneity., Hunter Allan Miller

Electronic Theses and Dissertations

The inherent heterogeneity of tumor tissue presents a major challenge to nanoparticle-medicated drug delivery. This heterogeneity spans from the molecular to the cellular (cell types) and to the tissue (vasculature, extra-cellular matrix) scales. Here we employ computational modeling to evaluate therapeutic response as a function of vascular-induced tumor tissue heterogeneity. Using data with three-layered gold nanoparticles loaded with cisplatin, nanotherapy is simulated with different levels of tissue heterogeneity, and the treatment response is measured in terms of tumor regression. The results show that tumor vascular density non-trivially influences the nanoparticle uptake and washout, and the associated tissue response. The drug …


Increasing Ph In Cancer: Enabling A New Therapeutic Paradigm Using Novel Carbonate Nanoparticles, Avik Som May 2018

Increasing Ph In Cancer: Enabling A New Therapeutic Paradigm Using Novel Carbonate Nanoparticles, Avik Som

McKelvey School of Engineering Theses & Dissertations

Enormous progress has been made to treat cancer, and yet the mortality rate of cancer remains unacceptably high. High clinical resistance to molecularly targeted therapeutics has pushed interest again towards inhibiting universal biochemical hallmarks of cancer. Recent evidence suggests that malignant tumors acidify the local extracellular environment to activate proteases for degrading the tumor matrix, which facilitates metastasis, and explains why more aggressive tumors are more acidic. Current therapies have only focused on using the low pH for enhancing drug release in tumors, thereby still relying on the traditional paradigm of intracellular inhibition of pathways, a method that continues to …


Sensitivity Of Diffuse Reflectance Spectroscopy To Dose- And Depth-Dependent Changes In Tumor Oxygenation After Radiation Therapy, Daria Semeniak May 2017

Sensitivity Of Diffuse Reflectance Spectroscopy To Dose- And Depth-Dependent Changes In Tumor Oxygenation After Radiation Therapy, Daria Semeniak

Graduate Theses and Dissertations

Along with chemotherapy, immunotherapy, and surgery, radiotherapy is one of the most common treatments used against cancer. Around 50% of all cancer patients undergo radiation therapy. While for some patients radiotherapy works efficiently and lead to a complete cancer disappearance, for others treatment outcome may be less favorable due to radioresistance processes happening within a tumor on the molecular level. Radioresistance remains a big challenge for modern oncology. The ability to identify radioresistance at the early stage of radiotherapy would help physicians to improve therapy efficiency. At the current moment, despite the rapid progress in cancer understanding and diagnostic modalities, …


Elucidating The Effects Of Metabolic State On Nanoparticle Distribution In Mice And In Vitro Uptake, Kevin James Quigley Dec 2016

Elucidating The Effects Of Metabolic State On Nanoparticle Distribution In Mice And In Vitro Uptake, Kevin James Quigley

Doctoral Dissertations

Since almost 70% of the U.S. population over 20 years old is overweight and 30% is obese, with much of the western world following suit, many patients that will potentially be administered circulating nanoparticles designed to localize to tumors and avoid non-target areas will have significant amounts of white adipose tissue (WAT), enlarged livers, and additional metabolic complications such as type 2 diabetes. However, studies on nanoparticle biodistribution and efficacy take place almost without exception in lean rodents with healthy metabolic states. In this work, I determined the biodistribution of model nanoparticles – neutral filomicelles and polystyrene spheres both carrying …


State Space Analysis Of Dominant Structures In Dynamic Social Systems, Jeremy B. Sato Aug 2016

State Space Analysis Of Dominant Structures In Dynamic Social Systems, Jeremy B. Sato

McKelvey School of Engineering Theses & Dissertations

Many systems involving human relationships are modeled as dynamic systems, as diverse as urban population growth, diffusion of innovations, spread of viruses, and supply chain management. A fundamental assumption is that these systems contain variables which accumulate and deplete over time (people, innovation adoptions, infections, and orders), and whose dynamics are determined by societal rules and human decision making processes. These assumptions allow the system to be formally expressed by ordinary differential equations which are often nonlinear and contain multiple state variables and feedback loops. Analytical methods have been developed to identify the dominant feedback loops which primarily influence the …


Surface-Initiated Polymerizations For The Rapid Sorting Of Rare Cancer Cells, Jacob L. Lilly Jan 2016

Surface-Initiated Polymerizations For The Rapid Sorting Of Rare Cancer Cells, Jacob L. Lilly

Theses and Dissertations--Chemical and Materials Engineering

Cancer metastasis directly accounts for an estimated 90% of all cancer related deaths and is correlated with the presence of malignant cells in systemic circulation. This observed relationship has prompted efforts to develop a fluid biopsy, with the goal of detecting these rare cells in patient peripheral blood as surrogate markers for metastatic disease as a partial replacement or supplement to tissue biopsies. Numerous platforms have been designed, yet these have generally failed to support a reliable fluid biopsy due to poor performance parameters such as low throughput, low purity of enriched antigen positive cells, and insufficiently low detection thresholds …


Effect Of Chemotherapeutic Treatment Schedule On A Tissue Transport Model, Dan E. Ganz Nov 2014

Effect Of Chemotherapeutic Treatment Schedule On A Tissue Transport Model, Dan E. Ganz

Masters Theses

Current chemotherapeutic treatment schedule prediction methods rely heavily on PK/PD-based models and overlook the important contribution of tissue-level transport and binding. Tissue-level transport and binding phenomena are essential to understanding drug delivery and efficacy in tumors. Drugs with desirable PK/PD properties often fail in vivo due to poor tissue-level transport. We developed an in silico method to predict the effect of treatment schedule on efficacy that couples PK/PD with tissue-level transport. Treatment schedules were implemented on theoretical drugs with different PK/PD and transport properties. For each drug with a given clearance rate, diffusivity, and binding, treatment schedules consisting of one …