Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Cancer

Theses/Dissertations

Cell and Developmental Biology

Institution
Publication Year
Publication

Articles 1 - 30 of 46

Full-Text Articles in Medicine and Health Sciences

Targeting Strategies To Optimize The Therapeutic Potential Of Gold Compounds Against Her2-Positive Breast Cancers, Afruja Ahad Feb 2024

Targeting Strategies To Optimize The Therapeutic Potential Of Gold Compounds Against Her2-Positive Breast Cancers, Afruja Ahad

Dissertations, Theses, and Capstone Projects

The overexpression of HER2 accounts for 20-30% of breast cancer tumors and not only serves as a marker for poor predictive clinical outcomes but also as a target for treatment. Antibody-drug conjugates (ADCs) combine the selectivity of monoclonal antibodies (mAbs) with the efficacy of chemotherapeutic drugs to provide targeted treatment without toxicity to normal tissue. Most of the ADCs currently in the clinic for cancer chemotherapy are based on complex organic molecules. In contrast, the conjugation of metallodrugs to mAbs has been overlooked when there is enormous potential in this area with the resurgence of metal-based drugs as prospective cancer …


Early Stage Or Curable Cancer Diagnoses In Minorities: A Journey Of Survivors, Lora Asberry Jul 2023

Early Stage Or Curable Cancer Diagnoses In Minorities: A Journey Of Survivors, Lora Asberry

Master of Science in Integrative Biology Theses

Patients diagnosed with early-staged or curable forms of cancer experience physical, as well as, mental challenges associated with disease progression and treatment. Previous studies have demonstrated that minorities and underrepresented communities did not receive the same level of care in comparison to their non-minority counterparts. Previous studies have also demonstrated that health disparities among minorities affected their cancer journey. This study addressed: how medical disparities varied between minorities and non-minorities, the overall effects of the cancer diagnoses in minorities compared to non-minorities, whether these perspectives differed in male vs. female participants, and whether there were any possible communication barriers between …


Synthesis, Characterization And Biological Evaluation Of Polyarginine Derived Bone-Targeting Peptides, Gina L. Antuono May 2023

Synthesis, Characterization And Biological Evaluation Of Polyarginine Derived Bone-Targeting Peptides, Gina L. Antuono

Seton Hall University Dissertations and Theses (ETDs)

Osteoblast-targeting peptides in the treatment of bone disease is a new and novel approach to offering effective treatment of various cancers and can be used in bio-medical, medicinal chemistry and biotechnology applications. By targeting adhesion proteins produced by osteoblast cells, certain cancers which migrate and metastasize to the bone may be more effectively treated. An osteoblast-targeting peptide composed of Ser-Asp-Ser-Ser-Asp (SDSSD) which selectively binds to osteoblast cells via periostin has recently been identified. This peptide was functionalized with polyurethane, generating nanomicelles which encapsulated RNA for the therapeutic treatment of osteoporosis. This study has served as the basis for the research …


Protacs – A Novel And Rapidly Developing Field Of Targeted Protein Degradation, Hannah R. Gatley Jan 2023

Protacs – A Novel And Rapidly Developing Field Of Targeted Protein Degradation, Hannah R. Gatley

Theses and Dissertations

There is a continued need for new technology and strategies for tackling cancer and other diseases, and within the current century a novel therapeutic strategy has emerged in the realm of targeted protein degradation called Proteolysis-Targeting Chimeras (PROTACs). This technology specifically targets and degrades disease-causing proteins via the ubiquitin-proteasome system, and has seen an explosion of research and intrigue in both academia and industry over the past two decades. The diversity of PROTAC classes based on the E3 ligase recruiting ligand and the target protein allows for a universal molecular structure that can be customized for a specific target and …


Identification Of Novel Biosynthetic Gene Clusters Encoding For Polyketide/Nrps-Producing Chemotherapeutic Compounds From Marine-Derived Streptomyces Hygroscopicus From A Marine Sanctuary, Hannah Ruth Flaherty Jan 2023

Identification Of Novel Biosynthetic Gene Clusters Encoding For Polyketide/Nrps-Producing Chemotherapeutic Compounds From Marine-Derived Streptomyces Hygroscopicus From A Marine Sanctuary, Hannah Ruth Flaherty

Honors Theses and Capstones

Nearly one out of six deaths in 2020, around ten million people, were caused by cancer, making it a leading cause of death worldwide (WHO, 2022). This major public health issue, in addition to the rise of multidrug-resistant (MDR) pathogens, provides a high demand for the discovery of new pharmaceutical drugs to be used clinically to treat these conditions. The Streptomyces genus accounts to produce 39% of all microbial metabolites currently approved for human health, indicating its potential as an important species to study for antimicrobial and anticancer agents. The long linear genome of Streptomyces contains specialized sequences known as …


Visualization And Characterization Of The Immunological Synapse Between Chlorotoxin Chimeric Antigen (Cltx-Car) Redirected T Cells And Targeted Glioblastoma Tumors, Arianna Livi Jan 2023

Visualization And Characterization Of The Immunological Synapse Between Chlorotoxin Chimeric Antigen (Cltx-Car) Redirected T Cells And Targeted Glioblastoma Tumors, Arianna Livi

CMC Senior Theses

Chimeric Antigen Receptor T (CAR-T) cells have demonstrated anti-tumor activity against aggressive and invasive cancers such as glioblastoma (GBM); however, clinical response rates remain low in clinical trial studies. Tumor heterogeneity and tumor microenvironment conditions pose significant challenges for treatment of GBM, thus continuous optimization of CAR-T cell therapies and identification of novel, widely expressed, and highly specific GBM antigens are vital to better patient outcomes. A newly developed CAR-T cell construct incorporating chlorotoxin (CLTX) as the targeting domain exhibited broad GBM-targeting capabilities and elicited potent cytotoxic effects during preclinical studies and is currently being tested in a phase I …


The Role Of Reactive Oxygen Species In The Accumulation Of Driver Mutations In B Cell Acute Lymphoblastic Leukemia, Mia P. Sams Jun 2022

The Role Of Reactive Oxygen Species In The Accumulation Of Driver Mutations In B Cell Acute Lymphoblastic Leukemia, Mia P. Sams

Electronic Thesis and Dissertation Repository

B cell acute lymphoblastic leukemia (B-ALL) is the most prevalent type of cancer in young children and is associated with recurrent mutations and high levels of reactive oxygen species (ROS). The antioxidant N-acetylcysteine was tested for its ability to prolong lifespan of a mouse model of B-ALL and reduce frequency of mutations. Mice treated with 1g/L of N-acetylcysteine in drinking water were found to have delayed onset of B-ALL at 11 weeks of age and changes in gene expression relating to B cell development, calcium-apoptosis signaling, and pathways in cancer, although no differences in lifespan were observed. Tumours from treated …


Developing Novel Water-Soluble Porphyrins For Potential Use As Photosensitizers In Photodynamic Therapy, Kayla R. Whittington Apr 2022

Developing Novel Water-Soluble Porphyrins For Potential Use As Photosensitizers In Photodynamic Therapy, Kayla R. Whittington

Honors Theses

Photodynamic therapy (PDT) is a treatment modality for various illnesses, including some types of cancer. Lung cancer is the leading cause of cancer death in the United States. The prevalence of lung cancer in certain gender, racial, ethnic, and socioeconomic groups add to existing health disparities in the United States. For this reason, it is necessary to address the social determinants underlying lung cancer disparities, as well as improve treatment options. These treatment options should be cost effective, convenient, and increase survival rates. This research focused on synthesizing novel water-soluble porphyrin compounds for use as photosensitive agents in PDT for …


Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach Dec 2021

Differentiating The Mechanistic Role And Chemotherapeutic Potential Of Src And Podoplanin In Oncogenic Transformation, Edward P. Retzbach

Graduate School of Biomedical Sciences Theses and Dissertations

There were an estimated 20 million new cancer cases worldwide in 2020, resulting in nearly 1000 deaths per hour [1]. Oral cancer exemplifies the difficulties of treating cancer patients. The first line for oral cancer treatment is surgery and radiation that can lead to patient disfigurement and decreased quality of life in cancer survivors [2-4]. Though there have been many developments in chemotherapy in the last 30 years, the 50% mortality rate associated with oral cancer has not changed [4, 5]. Longitudinal studies that track survival rates in oral cancer patients demonstrate a 3-fold reduction in patient deaths when patients …


Uncovering A Myc-Driven Tumor-Suppressive Program In Proliferating Lymphocytes, Elena Tonc Aug 2021

Uncovering A Myc-Driven Tumor-Suppressive Program In Proliferating Lymphocytes, Elena Tonc

Arts & Sciences Electronic Theses and Dissertations

Rapid cell proliferation is a hallmark feature of adaptive immune cells lymphocytes. It is essential for the establishment of diverse antigen receptor repertoires and amplification of antigen-specific immune responses. While such proliferation is beneficial for host protection from infections and cancers, it inevitably elevates the risk of oncogenic transformation. In developing and germinal center B lymphocytes, the risk is further increased by endogenous, genomic insults due to antigen receptor rearrangements and somatic mutations, with which expression of the proto-oncogene c-MYC is closely associated. Nonetheless, frequencies of cancers originated from B lymphocytes are relatively low, suggesting that they are protected from …


Understanding The Pathogenesis Of Renal Medullary Carcinoma, Melinda Soeung Aug 2021

Understanding The Pathogenesis Of Renal Medullary Carcinoma, Melinda Soeung

Dissertations & Theses (Open Access)

Renal medullary carcinoma (RMC) is a lethal cancer that predominantly affects young individuals with sickle cell trait (SCT). It is not currently understood why RMC only affects certain individuals with SCT. We found that patients with RMC more frequently participated in high-intensity exercise than matched controls. Using mouse models of SCT, we demonstrated the significant increase of renal hypoxia in the right kidney following high- but not moderate-intensity exercise. We also demonstrated in cell culture studies that SMARCB1 is ubiquitinated for proteasome-mediated degradation in hypoxia, and the re-expression of SMARCB1 leads to compromised proliferation in renal cells specifically in the …


Targeting Plasma Membrane Phosphatidylserine Content To Inhibit Oncogenic Kras Function, Walaa E. Kattan Aug 2021

Targeting Plasma Membrane Phosphatidylserine Content To Inhibit Oncogenic Kras Function, Walaa E. Kattan

Dissertations & Theses (Open Access)

The small GTPase KRAS, which is frequently mutated in human cancers, must be localized to the plasma membrane (PM) for biological activity. We recently showed that the KRAS C-terminal membrane anchor exhibits exquisite lipid-binding specificity for select species of phosphatidylserine (PtdSer). We therefore investigated whether reducing PM PtdSer content is sufficient to abrogate KRAS oncogenesis. Oxysterol-related binding proteins ORP5 and ORP8 exchange PtdSer synthesized in the ER for phosphatidylinositol-4-phosphate (PI4P) synthesized in the PM. We show that depletion of ORP5 or ORP8 reduced PM PtdSer levels, resulting in extensive mislocalization of KRAS from the PM. Concordantly, ORP5 or ORP8 depletion …


A Time-Course Characterization Of Muscle Function And Mitochondrial Markers During Colorectal Cancer-Induced Cachexia In Tumor-Bearing Male Mice, Ana Cabrera Ayuso Jul 2021

A Time-Course Characterization Of Muscle Function And Mitochondrial Markers During Colorectal Cancer-Induced Cachexia In Tumor-Bearing Male Mice, Ana Cabrera Ayuso

Graduate Theses and Dissertations

Cachexia is a multisystemic and multifactorial syndrome prevalent in cancer patients. It is clinically defined by involuntary loss of >5% weight in a six-month window, despite nutritional interventions. A negative energy balance characterizes cancer cachexia (CC), it is associated with weakness and fatigue in skeletal muscle. Impaired muscle function is associated with lower quality of life in cancer patients. Defects in mitochondrial function are strongly associated with muscle wasting. This study explored muscular contractile function and mitochondrial quality control (MQC) markers in soleus, gastrocnemius, and tibialis anterior (TA) muscles of C26-induced male tumor-bearing mice during a 25-day time course. It …


Honokoil Treatment On Glioblastoma Cells, Julianne Weaver Apr 2021

Honokoil Treatment On Glioblastoma Cells, Julianne Weaver

Honors Theses

Glioblastoma is a malignant brain tumor without effective treatment options available because of its resistance to chemotherapy and radiation. This specific type of cancer is difficult to treat because the cancer stem cells that are not actively growing. These cells are dormant, which means they will not react to treatment because they are not dividing, and it is these cells that result in the high prevalence of relapse. Honokiol is a Chinese magnolia species that is known for its anti-inflammatory, anti-proliferative, and proapoptotic effects which make it an optimal candidate for glioma cell treatment. Honokiol was used in this experiment …


Examining The Mechanistic Roles Of Integrin Alpha-6 In Cancer Metastasis., Chase T. Clark Mar 2021

Examining The Mechanistic Roles Of Integrin Alpha-6 In Cancer Metastasis., Chase T. Clark

Honors College Theses

Metastasis- the spread of cancer cells from the primary tumor to the surrounding tissues- is responsible for 90% of cancer deaths. Integrin alpha-6 (ITGA6) is a specific transmembrane cell surface protein that functions in cell surface adhesion and signaling. ITGA6 is upregulated in many types of cancers and promotes the migration and invasion of cancer cells to surrounding tissues. It is my objective to determine the mechanism through which ITGA6 facilitates the migration of cancer cells through the extracellular matrix (ECM). These experiments helped to establish the role of ITGA6 in tumor development and provide focus for possible chemotherapeutic treatment. …


Association Between Plasma Genistein And Health-Related Quality Of Life In Breast Cancer Survivors, Tran Pham Jan 2021

Association Between Plasma Genistein And Health-Related Quality Of Life In Breast Cancer Survivors, Tran Pham

Honors Undergraduate Theses

According to the American Cancer Society, breast cancer is the most commonly diagnosed cancer and is the second leading cause of cancer death in American women. Breast cancer screenings and improvement in treatments have resulted in the rising number of survivors in the recent decade. This urged the need for post-diagnosis lifestyle changes to improve breast cancer patients' quality of life. Many studies found soy food, the primary dietary source of phytoestrogens, has a protective effect against breast cancer recurrence and mortality. Dietary phytoestrogens can be classified into two groups: isoflavones and lignans. Daidzein and genistein were identified as the …


Exosomes And Their Role In Asbestos Exposure And Mesothelioma, Phillip Blake Munson Jan 2019

Exosomes And Their Role In Asbestos Exposure And Mesothelioma, Phillip Blake Munson

Graduate College Dissertations and Theses

Malignant mesothelioma (MM) is a locally invasive and highly aggressive cancer arising on the mesothelial surface of organ cavities (mainly pleural) as a direct result of asbestos exposure. The latency period of MM is long (20-50yrs) after initial asbestos exposure, and the prognostic outcomes are dismal with median life expectancy of 6-12 months post-diagnosis. There are no useful biomarkers for early MM diagnosis, no successful therapeutic interventions. These vast voids of knowledge led to our hypotheses that secreted vesicles, termed exosomes, play an important role in MM development and tumorigenic properties. Exosomes are nano-sized particles secreted from all cell types …


Killing Breast Cancer One Porphyrin At A Time, Taylor C. Lymburner Jan 2019

Killing Breast Cancer One Porphyrin At A Time, Taylor C. Lymburner

Honors Theses

New treatments for cancer are continuously being developed and improved. One such treatment is Photodynamic Therapy, more commonly referred to as PDT. PDT is quickly becoming more popular due to its relative lack of side effects that are present in other treatments. In PDT, light-sensitive agents are required and are activated by light in the targeted cells. There are many types of PDT agents but the one focused on in this research is a four-pyrrole ring structure known as a porphyrin. The combination of H2 TPPC with 3- amino-oxetane-3-yl-methanol created the final product ofH2TPP-Oxo-MeOH. Once the porphyrin was formed, it …


Effectiveness And Mechanism Of Action Of Modified Porphyrins For Photodynamic Therapy Of Triple Negative Breast Cancer Cells, Hannah Brandon Jan 2019

Effectiveness And Mechanism Of Action Of Modified Porphyrins For Photodynamic Therapy Of Triple Negative Breast Cancer Cells, Hannah Brandon

Honors Theses

Triple negative breast cancer (TNBC) is a particularly aggressive form of breast cancer that lacks the three molecules typically targeted for treatment. Standard treatment methods leave much to be desired--the rates of metastasis and recurrence are high and the prognosis for most patients with TNBC is poor. One potential treatment for TNBC is photodynamic therapy (PDT), which uses compounds called photosensitizers that are taken up by all tissues in the body. The tumor is exposed to light, activating the photosensitizer and creating reactive oxygen species that cause cell death. This method is relatively pain-free, effective, and does not harm cells …


Tumors Interrupt Irf8-Mediated Dendritic Cell Development To Overcome Immune Surveillance, Melissa Ann Meyer May 2018

Tumors Interrupt Irf8-Mediated Dendritic Cell Development To Overcome Immune Surveillance, Melissa Ann Meyer

Arts & Sciences Electronic Theses and Dissertations

Tumors employ multiple mechanisms to evade immune surveillance. One mechanism is tumor-induced myelopoiesis, which expands immune suppressive granulocytes and monocytes to create a protective tumor niche shielding even antigenic tumors. As myeloid cells and immune-stimulatory conventional dendritic cells (cDCs) are derived from the same progenitors, it is logical that tumor-induced myelopoiesis might also impact cDC development. The cDC subset cDC1 is marked by CD141 in humans and CD103 or CD8α in mice. cDC1s act by cross presenting antigen and activating CD8+ T cells. Given these functions, CD103+ cDC1s can support anti-tumor CD8+ T cell responses. However, CD103+ cDC1 numbers are …


The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

Dissertations & Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is …


Pkm2 Influences The Metabolic Fate Of Butyrate In Colorectal Cancer Cells, Megan Louise Pence May 2018

Pkm2 Influences The Metabolic Fate Of Butyrate In Colorectal Cancer Cells, Megan Louise Pence

Chancellor’s Honors Program Projects

No abstract provided.


Evaluation And Adaptation Of Live-Cell Interferometry For Applications In Basic, Translational, And Clinical Research, Kevin A. Leslie Jan 2018

Evaluation And Adaptation Of Live-Cell Interferometry For Applications In Basic, Translational, And Clinical Research, Kevin A. Leslie

Theses and Dissertations

Cell mass is an important indicator of cell health and status. A diverse set of techniques have been developed to precisely measure the masses of single cells, with varying degrees of technical complexity and throughput. Here, the development of a non-invasive, label-free optical technique, termed Live-Cell Interferometry (LCI), is described. Several applications are presented, including an evaluation of LCI’s utility for assessing drug response heterogeneity in patient-derived melanoma lines and the measurement of CD3+ T cell kinetics during hematopoietic stem cell transplantation. The characterization of mast cells during degranulation, the measurement of viral reactivation kinetics in Kaposi’s Sarcoma, and drug …


Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach Jan 2018

Studies Of Norspermidine Uptake In Drosophila Suggest The Existence Of Multiple Polyamine Transport Pathways, Michael Dieffenbach

Honors Undergraduate Theses

Polyamines are a class of essential nutrients involved in many basic cellular processes such as gene expression, cell proliferation, and apoptosis. Without polyamines, cell growth is delayed or halted. Cancerous cells require an abundance of polyamines through a combination of synthesis and transport from the extracellular environment. An FDA-approved drug, D,L-α-difluoromethylornithine (DFMO), blocks polyamine synthesis but is ineffective at inhibiting cell growth due to polyamine transport. Thus, there is a need to develop drugs that inhibit polyamine transport to use in combination with DFMO. Surprisingly, little is known about the polyamine transport system in humans and other eukaryotes. Understanding the …


Rna Sequencing In The Development Of Cancer-Cachexia, Thomas Allen Blackwell Aug 2017

Rna Sequencing In The Development Of Cancer-Cachexia, Thomas Allen Blackwell

Graduate Theses and Dissertations

Introduction: Cancer is a major public health problem in the U.S. and the world. In 2013 there were an estimated 1,660,290 new cases of cancer in the U.S. Cancer-Cachexia (CC) is a common effect of many cancers, and is directly responsible for 20-40% of cancer-related deaths. The mechanisms that control the development of CC are not well understood. Most investigations of CC focus on the post-cachectic state and do not examine the progression of the condition. The purpose of this study was to utilize RNA sequencing to analyze transcriptomic alterations throughout the progression of CC. Methods: Lewis Lung Carcinoma cells …


Mitochondrial Dynamics Controls T Cell Fate Through Metabolic Programming, Michael Buck May 2017

Mitochondrial Dynamics Controls T Cell Fate Through Metabolic Programming, Michael Buck

Arts & Sciences Electronic Theses and Dissertations

Activated effector T (TE) cells augment anabolic pathways of metabolism, such as aerobic glycolysis, while memory T (TM) cells engage catabolic pathways, like fatty acid oxidation (FAO). However, signals that drive these differences remain unclear. Mitochondria are metabolic organelles that actively transform their ultrastructure. Therefore, we questioned whether mitochondrial dynamics controls T cell metabolism. We show that TE cells have punctate mitochondria, while TM cells maintain fused networks. The fusion protein Opa1 is required for TM, but not TE cells after infection, and enforcing fusion in TE cells imposes TM cell characteristics and enhances antitumor function. Our data suggest that, …


Cancer As A Metabolic Disease, Javaria Haseeb Apr 2017

Cancer As A Metabolic Disease, Javaria Haseeb

Honors Senior Capstone Projects

Despite decades of intensive scientific and medical efforts to develop efficient and effective treatments for cancer, it remains one of the prime causes of death today. For example, in 2016, there will be an estimated 1,685,210 new cases of cancer and 595,690 deaths due to cancer in the United States alone (National Cancer Institute). Worldwide in 2012, there were an estimated 14 million new cases of cancer and 8.2 million deaths due to cancer. In order to come up with better methods of detection and more successful modes of treatment, it is crucial that scientists understand the depth of not …


Thyroid Hormone Receptor Ss (Trß) Regulation Of Runt-Related Transcription Factor 2 (Runx2) In Thyroid Tumorigenesis: Determination Of The Trß Nuclear Protein Complexes That Associate With The Runx2 Gene., Thomas Howland Taber Jan 2017

Thyroid Hormone Receptor Ss (Trß) Regulation Of Runt-Related Transcription Factor 2 (Runx2) In Thyroid Tumorigenesis: Determination Of The Trß Nuclear Protein Complexes That Associate With The Runx2 Gene., Thomas Howland Taber

Graduate College Dissertations and Theses

Thyroid Tumorigenesis is typically a well understood process, with well delineated oncogenic factors. Follicular and papillary thyroid cancers are typically survivable, with 5-year survival rates being >95% for Stage I-III of both cancer types. Anaplastic thyroid cancer, in contrast, lacks this prognosis, and is the most lethal of all endocrine-related cancers. The median survival time after a diagnosis is generally between 6-8 months, with a 5-year survival rate of <10%. Current treatment for anaplastic thyroid cancers routinely meet roadblocks, as resistance is quickly developed. Even non-discriminatory kinase inactivators, such as sorafenib, which are generally considered a drug of last resort, are unable to effect survival rates. As such, there is a clear need for further investigation of the causes of anaplastic thyroid cancer mechanisms.

Previous work in the Carr lab revealed a novel regulatory pathway of an oncogene that is associated with several other endocrine-related cancers, as well as other non-endocrine-related cancers. Specifically, the Runt-related …


The Effect Of K562-Il21-2 Plasma Membrane Particles On The Proliferation Of Natural Killer Cells To Fight Cancer, Michelle Prophete Jan 2017

The Effect Of K562-Il21-2 Plasma Membrane Particles On The Proliferation Of Natural Killer Cells To Fight Cancer, Michelle Prophete

Honors Undergraduate Theses

Immunotherapy has emerged as a current and future paradigm of cancer treatment, which utilizes the body’s immune system to eradicate cancer. Natural Killer (NK) cells as part of the innate immune system have immense potential in their anti-tumor cytotoxic activities and host cell surveillance properties. NK cells comprise approximately five to fifteen percent of peripheral blood lymphocytes and can be proliferated in vitro using recently developed methods with co-cultures with feeder cells (derived from engineered tumor cells) or plasma membrane (PM) particles, produced from the fore mentioned feeder cells, in combination with soluble cytokines. For efficient growth and maintenance of …


The Role Of Progesterone Receptor Membrane Component 1 In Receptor Trafficking And Disease, Kaia K. Hampton Jan 2017

The Role Of Progesterone Receptor Membrane Component 1 In Receptor Trafficking And Disease, Kaia K. Hampton

Theses and Dissertations--Pharmacology and Nutritional Sciences

The progesterone receptor membrane component 1 (PGRMC1) is a multifunctional protein with a heme-binding domain that promotes cellular signaling via receptor trafficking, and is essential for some elements of tumor growth and metastasis. PGRMC1 is upregulated in breast, colon, lung and thyroid tumors. We expanded the analysis of PGRMC1 in the clinical setting, and report the first analysis of PGRMC1 in human oral cavity and ovarian tumors and found PGRMC1 to correlate with lung and ovarian cancer patient survival. Furthermore, we discovered a specific role for PGRMC1 in cancer stem cell viability. PGRMC1 directly associates with the epidermal growth factor …