Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Gucy2c Signaling Opposes The Acute Radiation-Induced Gi Syndrome., Peng Li, Evan Wuthrick, Jeff A. Rappaport, Crystal Kraft, Jieru E. Lin, Glen Marszalowicz, Adam E. Snook, Tingting Zhan, Terry M. Hyslop, Scott A. Waldman Sep 2017

Gucy2c Signaling Opposes The Acute Radiation-Induced Gi Syndrome., Peng Li, Evan Wuthrick, Jeff A. Rappaport, Crystal Kraft, Jieru E. Lin, Glen Marszalowicz, Adam E. Snook, Tingting Zhan, Terry M. Hyslop, Scott A. Waldman

Department of Pharmacology and Experimental Therapeutics Faculty Papers

High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. …


Sigma1 Targeting To Suppress Aberrant Androgen Receptor Signaling In Prostate Cancer., Jeffrey D. Thomas, Charles G. Longen, Halley M. Oyer, Nan Chen, Christina M. Maher, Joseph M. Salvino, Blase Kania, Kelsey N. Anderson, William F. Ostrander, Karen E. Knudsen, Felix J. Kim May 2017

Sigma1 Targeting To Suppress Aberrant Androgen Receptor Signaling In Prostate Cancer., Jeffrey D. Thomas, Charles G. Longen, Halley M. Oyer, Nan Chen, Christina M. Maher, Joseph M. Salvino, Blase Kania, Kelsey N. Anderson, William F. Ostrander, Karen E. Knudsen, Felix J. Kim

Department of Cancer Biology Faculty Papers

Suppression of androgen receptor (AR) activity in prostate cancer by androgen depletion or direct AR antagonist treatment, although initially effective, leads to incurable castration-resistant prostate cancer (CRPC) via compensatory mechanisms including resurgence of AR and AR splice variant (ARV) signaling. Emerging evidence suggests that Sigma1 (also known as sigma-1 receptor) is a unique chaperone or scaffolding protein that contributes to cellular protein homeostasis. We reported previously that some Sigma1-selective small molecules can be used to pharmacologically modulate protein homeostasis pathways. We hypothesized that these Sigma1-mediated responses could be exploited to suppress AR protein levels and activity. Here we demonstrate that …