Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

The Effect Of A Powered Ankle Foot Orthosis On Walking In A Stroke Subject: A Case Study, Ali Pourghasem, Ismail Ebrahimi Takamjani, Mohammad Taghi Karimi, Mohammad Kamali, Mohammad Jannesari, Iman Salafian Dec 2016

The Effect Of A Powered Ankle Foot Orthosis On Walking In A Stroke Subject: A Case Study, Ali Pourghasem, Ismail Ebrahimi Takamjani, Mohammad Taghi Karimi, Mohammad Kamali, Mohammad Jannesari, Iman Salafian

Department of Mechanical and Materials Engineering: Faculty Publications

[Purpose] Standing and walking are impaired in stroke patients. Therefore, assisted devices are required to restore their walking abilities. The ankle foot orthosis with an external powered source is a new type of orthosis. The aim of this study was to evaluate the performance of a powered ankle foot orthosis compared with unpowered orthoses in a stroke patient.

[Subjects and Methods] A single stroke subject participated in this study. The subject was fitted with three types of ankle foot orthosis (powered, posterior leg spring, and carbon ankle foot orthoses). He was asked to walk with and without the three types …


Active Stiffening Of F-Actin Network Dominated By Structural Transition Of Actin Filaments Into Bundles, Shengmao Lin, Xinwei Han, Gary C.P. Tsui, David Hui, Linxia Gu Jan 2016

Active Stiffening Of F-Actin Network Dominated By Structural Transition Of Actin Filaments Into Bundles, Shengmao Lin, Xinwei Han, Gary C.P. Tsui, David Hui, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Molecular motor regulated active contractile force is key for cells sensing and responding to their mechanical environment, which leads to characteristic structures and functions of cells. The F-actin network demonstrates a two-order of magnitude increase in its modulus due to contractility; however, the mechanism for this active stiffening remains unclear. Two widely acknowledged hypotheses are that active stiffening of F-actin network is caused by (1) the nonlinear force-extension behavior of cross-linkers, and (2) the loading mode being switched from bending to stretching dominated regime. Direct evidence supporting either theory is lacking. Here we examined these hypotheses and showed that a …